首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Local protons and uncoupling of aerobic and artificial delta muH-driven ATP synthesis
Authors:S Luvisetto  G F Azzone
Institution:CNR Unit for the Study of the Physiology of Mitochondria, University of Padova, Italy.
Abstract:Gramicidin D causes inhibition of ATP synthesis either in the absence or in the presence of depression of delta muH, in low-salt and in high-salt media, respectively, at concentrations 2 orders of magnitude higher in the former with respect to the latter case. When the number of active redox pumps is reduced by increasing the antimycin concentration, the P/O ratio of respiring, gramicidin-treated mitochondria either is slightly increased in low-salt media or is first decreased and then constant in high-salt media. Addition of gramicidin D in low-salt media to mitochondria synthesizing ATP by means of artificially imposed delta muH gradients results in (a) no effect on the K+ efflux ratio +/- ADP (equivalent to the aerobic respiratory control ratio) and (b) no effect on the ATP/K+ ratio (equivalent to the P/O ratio) except at the low gramicidin D concentrations where there is also a slight enhancement of the rate of ATP hydrolysis. During respiration-driven ATP synthesis, addition of valinomycin plus K+ causes depression of delta muH with little inhibition of ATP synthesis while addition of gramicidin D causes inhibition of ATP synthesis with little depression of delta muH. The view is discussed that the gramicidin-accessible protons which uncouple aerobic ATP synthesis in a delta muH-independent manner are of a different class from the gramicidin-inaccessible protons which uncouple diffusion potential driven ATP synthesis in a delta muH-dependent manner. The gramicidin-accessible protons are suggested to be pump associated and to reflect primary events in energy transduction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号