首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Estrogen increases retrograde labeling of motoneurons: evidence of a nongenomic mechanism
Authors:Murashov Alexander K  Islamov Rustem R  McMurray Roger J  Pak Elena S  Weidner Douglas A
Institution:Department of Physiology, Brody School of Medicine, East Carolina University, Brody Bldg. #6N-98, 600 Moye Blvd., Greenville, NC 27858, USA. murashoval@mail.ecu.edu
Abstract:Estrogen has a variety of neurotrophic effects mediated via different signaling cascades, including ERK and phosphatidylinositol 3-kinase (PI3K) pathways. In this study, we investigated effects of estrogen and inhibitors for ERK and PI3K applied directly onto the cut sciatic nerve on retrograde labeling of lumbar motoneurons. A mix of retrograde tracer (Fluorogold) and 17{beta}-estradiol, in combination with an antagonist for estrogen receptors ICI 182,780, an inhibitor of ERK1/2 pathway (U0126), an inhibitor of PI3K (LY-294002), or a protein synthesis inhibitor (cycloheximide), was applied to the proximal stump of the transected sciatic nerve for 24 h. Coapplication of Fluorogold with 17{beta}-estradiol produced a significant increase in the number of retrograde-labeled lumbar motoneurons, compared with Fluorogold alone. Estrogen potentiation of retrograde labeling was inhibited by application of ICI 182,780, U0126, LY-294002, and cycloheximide. Immunohistochemical analysis of the sciatic nerve, 24 h following crush injury, revealed accumulation of phospho-ERK in regenerating nerve fibers. The data suggest a role for estrogen, ERK, PI3K, and protein synthesis in the uptake and retrograde transport of Fluorogold. We propose that estrogen action in peripheral nerve fibers is mediated via the ERK and PI3K signaling pathways and is reliant on local protein synthesis. sciatic nerve; estrogen receptor; extracellular signal-regulated kinase
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号