首页 | 本学科首页   官方微博 | 高级检索  
     


Photoelectric currents across planar bilayer membranes containing bacterial reaction centers: the response under conditions of multiple reaction-center turnovers
Authors:N K Packham  P Mueller  P L Dutton
Affiliation:Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104.
Abstract:The characteristics of the photocurrent response activated by continuous illumination of planar bilayer membranes containing bacterial reaction centers have been resolved by voltage clamp methods. The photocurrent response to a long light pulse consists of an initial spike arising from the fast, quasi-synchronous electron transfer from the reaction center bacteriochlorophyll dimer, BChl2, to the primary quinone QA. This is followed by a slow relaxation of the current to that promoted by secondary, asynchronous multiple electron transfers from the reduced cytochrome c through the reaction centers to the ubiquinone-10 pool. Currents derived from cytochrome c oxidation that occurs when cytochrome c is associated with the reaction center or when limited by diffusional interaction from solution are recognized. Changes of the ionic strength and pH in the aqueous phase, and the clamped membrane potential (+/- 150 mV), affect the electron-transfer rate between cytochrome c and BChl2. In contrast, the primary light-induced charge separation between BChl2 and QA, or electron transfer between QA on the ubiquinone pool are unaffected. During illumination of reaction center membranes supplemented with cytochrome c and a ubiquinone pool, there is a small but significant steady-state current which is considered to be caused by the re-oxidation of photoreduced quinone by molecular oxygen. In the dark, after illumination of reaction centers supplemented with cytochrome c and a ubiquinone pool, there is a small amount of reverse current resulting from the movement of charges back across the membrane. This reverse current is observed maximally after 400 ms illumination while prolonged illumination diminishes the effect. The source of this current is uncertain, but it is considered to be due to the flux of anionic semiquinone within the membrane profile; this may also be the species that interacts with oxygen giving rise to the steady-state current. It is postulated that when the reaction centers are contained in an alkane-containing phospholipid membrane, in contrast to the in vivo situation, the semiquinone anion formed in the QB site is not tightly bound to the site and can, by exchange-diffusion with the membrane-quinone pool, move away from the site and accumulate in the membrane. However, in the absence, more quantitative work superoxide anion, resulting from O2 interaction with semiquinone of QA, QB or pool cannot be excluded.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号