首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development of obesity following inactivation of a growth hormone transgene in mice
Authors:Daniel Pomp  Anita M Oberbauer  James D Murray
Institution:(1) Department of Animal Science, Oklahoma State University, 74078 Stillwater, OK, USA;(2) Department of Animal Science School of Veterinary Medicine, University of California-Davis, Davis, CA, USA;(3) Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
Abstract:Mice with a temporally regulatable ovine metallothionein 1a—ovine growth hormone transgene (oMT1a-oGH) were utilized to study the effects of withdrawal of elevated circulating levels of growth hormone (GH) on growth and body composition. The transgene was activated from 21–42 days of age by provision of zinc sulfate in the drinking water. At 42 days, mice were allocated to either activated transgenic (remain on zinc sulfate) or inactivated transgenic (removal of zinc sulfate) groups, and to receive eitherad libitum or restricted (80–90% ofad libitum) access to feed. Non-transgenic control mice were treated similarly. Body weights and intakes were recorded weekly. Mice were killed at 70 d and epididymal and subcutaneous fat pads, trimmed hind carcass and various organs were weighed. The main findings of this study are: (1) food-restricted mice possessing an activated oMT1a-oGH transgene fail to demonstrate increased growth, but exhibit significantly reduced levels of fat (P<0.05) relative to all other genotype x feed level combinations; and (2) inactivation of the oMT1a-oGH transgene, following a period of elevated GH levels, leads to development of obesity as evidenced by two to three fold increases in epididymal and subcutaneous fat pad weights (P<0.01) relative to both activated transgenic and non-transgenic control mice. These large increases in fat deposition also occurred when intake was restricted to 80–90% ofad libitum levels, indicating that metabolic changes independent of intake occur in these inactivated transgenic mice. It is possible that highly elevated production of GH in activated oMT1a-oGH transgenic mice leads to (1) enhanced promotion of preadipocyte differentiation, leading to increased numbers of adipocytes that, upon cessation of oGH production, are available for lipid deposition resulting in obesity, or (2) alterations in production of or responsiveness to insulin, leading to increased fat deposition upon removal of the chronic anti-lipogenic actions of GH. The oMT1a-oGH transgenic mouse line should provide a new genetic model with which to investigate the mechanisms by which growth hormone affects obesity.
Keywords:obesity  fat  growth hormone  transgenic  mice
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号