首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Morphological adjustment of senescent cells by modulating caveolin-1 status
Authors:Cho Kyung A  Ryu Sung Jin  Oh Yoon Sin  Park Ji Hyeun  Lee Jung Weon  Kim Hwang-Phill  Kim Kyung Tae  Jang Ik Soon  Park Sang Chul
Institution:Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, National University College of Medicine, Seoul, Korea.
Abstract:Morphological change is one of the cardinal features of the senescent phenotype; for example, senescent human diploid cells have a flat large shape. However, the mechanisms underlying such senescence-related morphological alterations have not been well studied. To investigate this situation, we characterized the senescence-dependent changes of cellular structural determinants in terms of their levels and activities. These determinants included integrins, focal adhesion complexes, and small Rho GTPases, and special emphasis was placed on their relationships with caveolin-1 status. We observed that the expression integrin beta(1) and focal adhesion kinase (FAK) were increased and that the phosphorylations of FAK and paxillin, hallmarks of focal adhesion formation, were also increased in senescent human diploid fibroblast cells. Moreover, the Rho GTPases Rac1 and Cdc42 were found to be highly activated in senescent cells. In addition, focal adhesion complexes and Rho GTPases were up-regulated in the caveolin-rich membrane domain in the senescent cells. Activated Rac1 and Cdc42 directly interacted with caveolin-1 in senescent cells. Interestingly, caveolin-1 knock-out senescent cells, achieved by using small interfering RNA and antisense oligonucleotide, showed disrupted focal adhesion formation and actin stress fibers via the inactivation of FAK, which resulted in morphological adjustment to the young cell-like small spindle shape. Based on the results obtained, we propose that caveolin-1 plays an important role in senescence-associated morphological changes by regulating focal adhesion kinase activity and actin stress fiber formation in the senescent cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号