首页 | 本学科首页   官方微博 | 高级检索  
     


Fluid shear stress enhanced DNA synthesis in cultured endothelial cells during repair of mechanical denudation
Authors:J Ando  T Komatsuda  C Ishikawa  A Kamiya
Affiliation:Research Institute of Applied Electricity, Hokkaido University, Sapporo, Japan.
Abstract:We have previously observed a stimulatory effect of fluid shear stress on the regeneration of cultured endothelial cell layers after mechanical denudation. In this study we examined how fluid shear stress affects endothelial cell DNA synthesis during regeneration. Following mechanical denudation of narrow linear areas, monolayers of bovine aortic endothelial cells cultured on plastic dishes were subjected to shear stress of 1.3-4.1 dynes/cm2 for 24-48 hours in a specially designed apparatus. After the application of shear stress, cells were stained with propidium iodide, and its fluorescence intensity, reflecting cellular DNA content, was measured using photometric fluorescence microscopy. The DNA content of cells exposed to shear stress increased significantly more than that of paired, static control cells (p less than 0.005 to p less than 0.001). The DNA histogram showed that cells exposed to shear stress contained a relatively high proportion of cells located in the S, G2, and M phases of the cell cycle as compared with the static control. These data suggest that fluid shear stress enhances endothelial cell DNA synthesis during the repair of mechanical denudation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号