首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria
Authors:F N Gellerich  M Schlame  R Bohnensack  W Kunz
Abstract:To investigate whether or not the mitochondrial intermembrane space together with the extramitochondrial space form a homogeneous pool for adenine nucleotides, rat-heart mitochondria were studied in reconstituted systems with pyruvate kinase and ADP-producing enzymes with varied localization. In the hexokinase system, ADP is produced extramitochondrially by added yeast hexokinase, whereas in the creatine kinase system mitochondrial creatine kinase is responsible for ADP regeneration in the intermembrane space. The dependence of mitochondrial respiration on the extramitochondrial ATP]/ADP] ratio in both systems was investigated experimentally and by means of computer simulation. Near the resting state, higher ATP]/ADP] ratios were found in the creatine kinase system than in the hexokinase system at the same rate of respiration. This and the maintaining of a substantial creatine kinase-stimulated respiration in the presence of pyruvate kinase in excess is explained by a two-compartment model considering diffusion limitations of adenine nucleotides. A diffusion rate constant of (8.7 +/- 4.7) 10(4) microliters X mg-1 X min-1 for ADP and ATP was estimated, resulting in rate-dependent concentration differences up to 13.7 microM AdN between the extramitochondrial space and the AdN-translocator at the maximum rate of oxidative phosphorylation of rat-heart mitochondria. The results support the assumption that ADP diffusion towards the AdN-translocator is limited if its extramitochondrial concentration is low, resulting in a dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号