首页 | 本学科首页   官方微博 | 高级检索  
     


The SOS regulatory system: control of its state by the level of RecA protease
Authors:J W Little
Abstract:Our current understanding of the SOS regulatory system suggests that it can exist in two extreme states: in the repressed state, LexA protein is active, and it represses a particular set of genes called SOS genes. In the induced state, which results from various impairments to DNA replication, LexA repressor is cleaved by the specific protease activity of the RecA protein; in consequence, the SOS genes are derepressed and they express various functions that are believed to aid cell survival in induced cells. Since high levels of RecA protease activity turn on this system, it seems plausible that the level of protease activity will also control the transitions between the two states of the system. In order to assess the in vivo level of protease activity, antibody techniques were used to study the stability of LexA repressor during various phases of the SOS regulatory cycle. Repressor was reasonably stable in the repressed state, but it was degraded within a few minutes after an inducing treatment. Cleavage depended upon the RecA protease activity and resulted in the same products as seen in vitro. Cleavage preceded, and did not depend upon, derepression of any SOS gene. During the transition to the repressed state, LexA repressor became increasingly stable with time, suggesting that as DNA damage was repaired the level of protease declined. This decline depended upon derepression of the regulatory system, consistent with the belief that an inducing signal, resulting from DNA damage, reversibly activates the RecA protease and is removed by the action of one or more SOS functions. At low levels of DNA damage, a subinduced state was observed in which repressor level was reduced by a low level of cleavage. These data indicate that the level of RecA protease activity controls the state of the system and the transitions between its two states.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号