Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis |
| |
Authors: | Jeff S Bowman Jody W Deming |
| |
Affiliation: | .School of Oceanography and Astrobiology Program, University of Washington, Box 357940, Seattle, WA 98105-7940 USA ;.Blue Marble Space Institute of Science, Seattle, USA |
| |
Abstract: | BackgroundPsychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains.ResultsSeven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices.ConclusionA focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1120) contains supplementary material, which is available to authorized users. |
| |
Keywords: | |
|
|