首页 | 本学科首页   官方微博 | 高级检索  
     


A simple new algorithm to filter marine mammal Argos locations
Authors:Carla  Freitas Christian  Lydersen Michael A.  Fedak Kit M.  Kovacs
Affiliation:Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromsø, Norway E-mail:;
NERC Sea Mammal Research Unit, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, Fife KY16 8LB, United Kingdom;
Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromsø, Norway
Abstract:During recent decades satellite telemetry using the Argos system has been used extensively to track many species of marine mammals. However, the aquatic behavior of most of these species results in a high number of locations with low or unknown accuracy. Argos data are often filtered to reduce the noise produced by these locations, typically by removing data points requiring unrealistic swimming speeds. Unfortunately, this method excludes a considerable number of good‐quality locations that have high traveling speeds that are the result of two locations being taken very close in time. We present an alternative algorithm, based on swimming speed, distance between successive locations, and turning angles. This new filter was tested on 67 tracks from nine different marine mammal species: ringed, bearded, gray, harbor, southern elephant, and Antarctic fur seals, walruses, belugas, and narwhals. The algorithm removed similar percentages of low‐quality locations (Argos location classes [LC] B and A) compared to a filter based solely on swimming speed, but preserved significantly higher percentages of good‐quality positions (mean ± SE% of locations removed was 4.1 ± 0.8%vs. 12.6 ± 1.2% for LC 3; 6.8 ± 0.6%vs. 15.7 ± 0.9% for LC 2; and 11.4 ± 0.7%vs. 21.0 ± 0.9% for LC 1). The new filter was also more effective at removing unlikely, conspicuous deviations from the track's path, resulting in fewer locations being registered on land and a significant reduction in home range size, when using the Minimum Convex Polygon method, which is sensitive to outliers.
Keywords:cetaceans    location class accuracy    location errors    path filter    pinnipeds    satellite telemetry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号