首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interspecific competition and torpor in golden spiny mice: two sides of the energy-acquisition coin
Authors:Levy Ofir  Dayan Tamar  Kronfeld-Schor Noga
Institution:Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel.
Abstract:We studied the occurrence of torpor in golden spiny mice in a hot rocky desert near the Dead Sea. In this rodent assemblage, a congener, the nocturnal common spiny mouse, competitively excluded the golden spiny mouse from the nocturnal part of the diel cycle and forced it into diurnal activity; this temporal partitioning allows the two species to partition their prey populations, particularly in summer when the diet of the two species is comprised mainly of arthropods, and largely overlap. We studied the effect of the presence of the common spiny mice at two resource levels (natural food availability and food added ad libitum) on populations of golden spiny mice in four large outdoor enclosures: two with common spiny mice removed and two enclosures with populations of both species. We hypothesized that with interspecific competition and/or reduced resources, golden spiny mice will increase their use of torpor. As we expected, supplemented food reduced the total time spent torpid. In summer, when the different activity periods of the two species results in prey species partitioning, removal of the congener did not affect torpor in the golden spiny mouse. However, in winter, when insect populations are low and the two species of mice overlap in a largely vegetarian diet, removal of the common spiny mouse reduced torpor in golden spiny mice, whether food was supplemented or not. This result suggests that torpor, a mechanism that allows small mammals to sustain periods of low availability of resources or high energetic requirements, may also help them to tolerate periods of enhanced interspecific competition. This may be a significant short-term mechanism that reduces competition and hence increases fitness, in particular of individuals of the subordinate species whose accessibility to resources may be limited.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号