首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spin trapping nitric oxide from neuronal nitric oxide synthase: A look at several iron-dithiocarbamate complexes
Authors:Weaver John  Porasuphatana Supatra  Tsai Pei  Budzichowski Theodore  Rosen Gerald M
Institution:Center for Low Frequency EPR Imaging for In Vivo Physiology, University of Maryland, Baltimore, MD 21201, USA.
Abstract:The free radical, nitric oxide ( radicalNO), is responsible for a myriad of physiological functions. The ability to verify and study radicalNO in vivo is required to provide insight into the events taking place upon its generation and in particular the flux of radicalNO at relevant cellular sites. With this in mind, several iron-chelates (Fe2+(L)2) have been developed, which have provided a useful tool for the study and identification of radicalNO through spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. However, the effectiveness of radicalNO detection is dependent on the Fe2+(L)2 complex. The development of more efficient and stable Fe2+(L)2 chelates may help to better understand the role of radicalNO in vivo. In this paper, we present data comparing several proline derived iron-dithiocarbamate complexes with the more commonly used spin traps for radicalNO, Fe2+-di(N-methyl-D-glutamine-dithiocarbamate) (Fe2+(MGD)2) and Fe2+-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2). We evaluate the apparent rate constant (kapp) for the reaction of radicalNO with these Fe2+(L)2complexes and the stability of the corresponding Fe2+(NO)(L)2 in presence of NOS I.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号