首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Separation of carrier mediated and vesicular release of GABA from rat brain slices.
Authors:E S Vizi  B Sperlágh
Institution:Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest. esvizi@koki.hi
Abstract:In this study the temperature dependence of 3H]GABA release from brain slices evoked by electrical field stimulation and the Na+/K+ ATPase inhibitor ouabain was investigated. 3H]GABA has been taken up and released from hippocampal slices at rest and in response to electrical field stimulation (20 V, 10 Hz, 3 msec, 180 pulses) at 37 degrees C. When the bath temperature was cooled to 7 degrees C, during the sample collection period, the tissue uptake and the resting outflow of 3H]GABA were not significantly changed. In contrast, the stimulation-induced tritium outflow increased both in absolute amount (Bq/g) and in fractional release and the S2/S1 ratio was also higher at 7 degrees C. Perfusion of the slices with tetrodotoxin (TTX, 1 microM) inhibited stimulation-induced 3H]GABA efflux indicating that exocytotic release of vesicular origin is maintained under these conditions. 15 min perfusion with ouabain (10-20 microM) induced massive tritium release both in hippocampal and in striatal slices. However, the fraction of 3H]GABA outflow evoked by ouabain was much higher in the hippocampus than in the striatum. Sequential lowering the bath temperature from 37 degrees C to 17 degrees C completely abolished ouabain-induced 3H]GABA release in both brain regions, indicating that it is a temperature-dependent, carrier-mediated process. When the same experiments were repeated under Ca2+ free conditions, cooling the bath temperature to 17 degrees C, although substantially decreased the release but failed to completely abolish the tritium outflow evoked by ouabain, a significant part was maintained. Our results show that vesicular (field stimulation-evoked) and carrier-mediated (ouabain-induced) release of GABA is differentially affected by low temperature: while vesicular release is unaffected, carrier-mediated release is abolished at low bath temperature. Therefore, lowering the temperature offers a reliable tool to separate these two kinds of release and makes possible to study exclusively the pure neuronal release of GABA of vesicular origin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号