首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Theoretical studies on solvation contribution to the thermodynamic stability of mutants of lysozyme T4
Authors:Deep Shashank  Ahluwalia J C
Institution:Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India. sdeep@instinct.v24.uthscsa.edu
Abstract:Atomic solvation parameters (ASPs) are widely used to estimate the solvation contribution to the thermodynamic stability of proteins as well as the free energy of association for protein-ligand complexes. In view of discrepancies in the results of free energies of solvation of folding for various proteins obtained using different atomic solvation parameter sets, systematic studies have been carried out for the calculation of accessible surface area and the changes in free energy of solvation of folding (deltaG(s,f)) for mutants of lysozyme T4 where threonine 157 is replaced by amino acids: cysteine, aspartate, glutamate, phenylalanine, glycine, histidine, isoleucine, leucine, asparagine, arginine, serine and valine. The deviations of the calculated results from the experimental results are discussed to highlight the discrepancies in the atomic solvation parameter sets and possible reasons for them. The results are also discussed to throw light on the effect of chain free energy and hydrogen bonding on the stability of mutants. The octanol to water-based ASP sets 'Sch1' and 'EM' perform better than the vacuum to water-based ASP sets. The vacuum to water-based ASP sets 'Sch3' and 'WE' can be used to predict the stability of mutants if a proper method to calculate the hydrogen bond contribution to overall stability is in place.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号