首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Muscle development in vitro following X irradiation
Authors:M Friedlander  E C Beyer  D A Fischman
Institution:1. Department of Anatomy, The University of Chicago, Chicago, Illinois 60637 USA;2. Department of Biology, The University of Chicago, Chicago, Illinois 60637 USA;3. The Committee on Developmental Biology, The University of Chicago, Chicago, Illinois 60637, USA;4. Department of Anatomy and Cell Biology, State University of New York-Downstate Medical Center, Brooklyn, New York 11204 USA
Abstract:Myogenic cells obtained from 12-day-old embryonic chicken hind limb and breast muscle were exposed to 5000 rads of X irradiation. Although 10% of the initial cell dissociates were killed by irradiation, the remaining cells were comparable to controls in plating efficiency and light microscopic morphology. Moreover, there was no increase or loss of cells for at least 72 hr in vitro when plated at a density of 2 × 106 cells/60-mm plate. It was found that muscle cell fusion after irradiation proceeded at the same rate and to the same relative extent as in control cultures. Myotubes developed normally; cross-striations were prominent by 5 to 7 days of culture and the cells maintained a well-differentiated state for periods of at least 3 weeks in vitro. In control cultures continuously labeled with 1 μCi/ml of 3H]TdR, 75% of the nuclei within myotubes were heavily labeled by 118 hr; less than 15% of the nuclei within syncytia of irradiated cultures were labeled. Quantitative microphotometry of Feulgen-stained cultures demonstrated that all nuclei within control and irradiated myotubes contained the 2C complement of DNA. Similar experiments conducted with cells released from limbs and breasts of 10-day-old embryos revealed lower absolute levels of cytoplasmic fusion in both control and irradiated samples, however, there was slightly more cell death after exposure to X rays in 10-day-old than 12-day-old material. Nevertheless, considerable cell fusion occurred in irradiated limb and breast cell cultures, consistent with the conclusion that the commitment to myogenesis of prefusion myoblasts is extremely stable even in the face of massive ionizing radiation and that neither cell division nor replication of DNA is an obligatory prerequisite for the in vitro fusion and subsequent differentiation of skeletal muscle obtained from 10- and 12-day-old chick embryos.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号