首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Polyamine metabolism of potato seed-tubers during long-term storage and early sprout development
Authors:Mikitzel L J  Knowles N R
Institution:Department of Plant Science, 4-10 Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
Abstract:Growth potential of potato (Solanum tuberosum L.) plants is influenced by seed-tuber age. After 24 days of growth, single-eye seedcores from 7-month-old seed-tubers produced 64% more foliar dry matter than those from 19-month-old seed-tubers, reflecting a higher growth rate. This study was initiated to determine if differences in polyamine (PA) metabolism are associated with aging and age-reduced vigor of potato seed-tubers. As tubers aged in storage, putrescine (Put) increased 2.2-fold, while spermidine (Spd) and spermine (Spm) decreased 33% and 38%, respectively. Ethylene content of the tuber tissue also increased with advancing age, suggesting that during the aging process S-adenosylmethionine was directed toward ethylene biosynthesis at the expense of the PAs. Single-eye cores from 7- and 19-month-old tubers were sown and PA levels in core and shoot tissues were monitored during plant development. Put titer of younger cores increased 8.8-fold by 12 days. In contrast, the increase in Put over the initial titer in older cores was 2.9-fold. The reduced ability of older cores to synthesize Put during plant establishment is probably due to a 45% decline in ornithine decarboxylase activity between 12 and 16 days after planting. Lack of available Put substrate limited the biosynthesis of Spd and Spm, and thus their concentrations remained lower in older cores than in younger cores. Lower PA titer in older cores during plant establishment is thus coincident with reduced growth potential. Concentrations of Put and Spd were higher in shoots developing from older cores throughout the study, but there was no age-related difference in Spm content. In contrast, activities of arginine and S-adenosylmethionine decarboxylases were higher in shoots from younger cores during establishment. The results indicate that aging affects PA metabolism in both tuber and developing plant tissues, and this may relate to loss of growth potential with advancing seed-tuber age.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号