Critical hydrophobic interactions between phosphorylation and actuator domains of Ca2+-ATPase for hydrolysis of phosphorylated intermediate |
| |
Authors: | Wang Guoli Yamasaki Kazuo Daiho Takashi Suzuki Hiroshi |
| |
Affiliation: | Department of Biochemistry, Asahikawa Medical College, Asahikawa 078-8510, Japan. |
| |
Abstract: | Functional roles of seven hydrophobic residues on the interface between the actuator (A) and phosphorylation (P) domains of sarcoplasmic reticulum Ca2+-ATPase were explored by alanine and serine substitutions. The residues examined were Ile179/Leu180/Ile232 on the A domain, Val705/Val726 on the P domain, and Leu119/Tyr122 on the loop linking the A domain and M2 (the second transmembrane helix). These residues gather to form a hydrophobic cluster around Tyr122 in the crystal structures of Ca2+-ATPase in Ca2+-unbound E2 (unphosphorylated) and E2P (phosphorylated) states but are far apart in those of Ca2+-bound E1 (unphosphorylated) and E1P (phosphorylated) states. The substitution-effects were also compared with those of Ile235 on the A domain/M3 linker and those of T181GE of the A domain, since they are in the immediate vicinity of the Tyr122-cluster. All these substitutions almost completely inhibited ATPase activity without inhibiting Ca2+-activated E1P formation from ATP. Substitutions of Ile235 and T181GE blocked the E1P to E2P transition, whereas those in the Tyr122-cluster blocked the subsequent E2P hydrolysis. Substitutions of Ile235 and Glu183 also blocked EP hydrolysis. Results indicate that the Tyr122-cluster is formed during the E1P to E2P transition to configure the catalytic site and position Glu183 properly for hydrolyzing the acylphosphate. Ile235 on the A domain/M3 linker likely forms hydrophobic interactions with the A domain and thereby allowing the strain of this linker to be utilized for large motions of the A domain during these processes. The Tyr122-cluster, Ile235, and T181GE thus seem to have different roles and are critical in the successive events in processing phosphorylated intermediates to transport Ca2+. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|