首页 | 本学科首页   官方微博 | 高级检索  
     


Biochemical analysis of att-defective mutants of the phage lambda site-specific recombination system
Authors:W Ross  M Shulman  A Landy
Affiliation:1. Division of Biology and Medicine Brown University, Providence, R.I. 02912, U.S.A.;2. Laboratory of Cell Biology, Rheumatic Disease Unit Wellesley Hospital, Toronto, Ontario M4Y 1J3, Canada
Abstract:Three mutations previously mapped to the common core region of the bacteriophage lambda att site have been sequenced. All were found to be due to the deletion of a T residue from a string of six T residues within the 15 base-pair core, the region of homology between the recombining sites. As judged by DNAase I protection experiments, binding of the Int protein is the same in the mutant and wild-type core sites. However, a difference in the Int binding to mutant cores is observed when the small neocarzinostatin molecule is used as a nuclease probe. The differences between mutant and wild type lead to the suggestion that Int is interacting with sequences at the core-arm junctions. Accordingly, the mutants are proposed to be defective in the spacing of Int monomers bound at two recognition sequences spanning the core-arm junctions. The anomalous electrophoretic mobility of wild-type att fragments and, more specifically, the effect of the single base core deletion on electrophoretic mobility are discussed in the text and in the Appendix. The mutant att2501, defective in both att and int functions, was sequenced and found to be a 335 base-pair deletion removing the coding region for 25 amino acids from the carboxy-terminal end of Int, as well as the entire att site. The postulated origin of the 501 mutation is also consistent with the model of two juxtaposed Int recognition sites.
Keywords:Author to whom correspondence should be addressed.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号