首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A peptide inhibitor of HIV-1 protease using alpha, beta- dehydro residues: a structure based computer model
Authors:Siddiqui M I  Kataria S  Ahuja V  Rao G S
Institution:Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
Abstract:HIV-1 encodes an aspartic protease, an enzyme crucial to viral maturation and infectivity. It is responsible for the cleavage of various protein precursors into viral proteins. Inhibition of this enzyme prevents the formation of mature, infective viral particles and therefore, it is a potential target for therapeutic intervention following infection. Several drugs that inhibit the action of this enzyme have been discovered. These include peptidomimetic inhibitors such as ABT-538 and saquinavir, and structure based inhibitors such as indinavir and nelfinavir. Several of these have been tested in human clinical trials and have demonstrated significant reduction in viral load. However, most of them have been found to be of limited clinical utility because of their poor pharmacological properties and also because the viral protease becomes rapidly resistant to these drugs on account of mutations in the enzyme. One way to overcome these limitations is to design an inhibitor that interacts mainly with the conserved residues of HIV-1 protease. By a rational drug design approach based on the high resolution X-ray crystal structure of the HIV-1 protease with--MVT 101 (a substrate based inhibitor) and the specific design principles of peptides containing dehydro-Alanine (delta Ala) derived from our earlier studies, we have designed a tetrapeptide with the sequence: NH2-Thr-delta Ala-delta Ala-Gln-COOH. Energy minimization and molecular modelling of the interaction of the designed tetrapeptide with the inhibitor binding site indicate that the inhibitor is in an extended conformation and makes excessive contacts with the viral enzyme at the interface between the protein subunits. The designed inhibitor has 33% of its interaction with the conserved region of HIV-1 protease which is of the same order as that of MVT 101 with the enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号