首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anisotropy decays of indole, melittin monomer and melittin tetramer by frequency-domain fluorometry and multi-wavelength global analysis
Authors:Lakowicz J R  Gryczynski I  Cherek H  Laczko G
Institution:University of Maryland at Baltimore, Center for Fluorescence Spectroscopy and School of Medicine, Department of Biological Chemistry, 660 West Redwood Street, Baltimore, MD 21201, USA.
Abstract:We used frequency-domain fluorescence spectroscopy to measure the fluorescence lifetime and anisotropy decays of indole in propylene glycol, and of the tryptophan emission of melittin monomer and tetramer in water solutions at 5 degrees C. We obtained an increase in resolution of the anisotropy decays by using multiple excitation wavelengths, chosen to provide a range of fundamental anisotropy values. The multi-excitation wavelength anisotropy decays were analyzed globally to recover a single set of correlation times with wavelength-dependent anisotropy amplitudes. Simulated data and kappaR2 surfaces are shown to reveal the effect of multi-wavelength data on the resolution of complex anisotropy decays. For both indole and melittin, the anisotropy decays are heterogeneous and require two correlation times to fit the frequency-domain data. For indole in propylene glycol at 5 degrees C we recovered correlation times of 0.59 and 4.10 ns, which appear to be characteristic of the rigid and asymmetric indole molecule. For melittin monomer the correlation times were 0.13 and 1.75 ns, and for melittin tetramer 0.12 and 3.96 ns. The shorter and longer correlation times of melittin are due to segmental motions and overall rotational diffusion of the polypeptide.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号