首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Water in barnacle muscle. III. NMR studies of fresh fibers and membrane-damaged fibers equilibrated with selected solutes.
Authors:E E Burnell  M E Clark  J A Hinke  and N R Chapman
Abstract:Water in barnacle muscle has been studied using NMR techniques. Fresh fibers are compared with membrane-damaged fibers treated with solutes that greatly alter fixed charge and total water content. Both water (97%) and solute (3%) protons are visible in continuous wave spectra of oriented fresh fibers. No local field inhomogeneities were detected, nor are cell solutes significantly bound. In pulse experiments, all cell water is visible and exhibits a single exponential decay. In fresh fibers, T2 approximately or equal to 40 ms; faster decaying signals are assigned to immobile and mobile protons on macromolecules. T1 and T1p are frequency dependent. Using equations derived for a two-compartment model with fast exchange, we calculate the following: tau b, the correlation time for anisotropic rotational motion of bound water; Sb, its order parameter; tau ex, the correlation time for exchange between bound and free fractions; f, the fraction of water bound; and Hr, the grams of water bound per gram of macromolecule. Whereas f varies inversely with total water content, the other parameters are virtually constant, with values: tau b approximately or equal to 1.3 X 10(-8) S; tau ex approximately or equal to 8 X 10(-6) s; Sb approximately or equal to 0.06; and Hr approximately or equal to 0.1g H2O/g macromolecule. Thus, the NMR relaxation detectable properties of water bound to macromolecules are unaffected by solutes that greatly alter the macromolecular surface charge.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号