首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Measles virus (MV) nucleoprotein binds to a novel cell surface receptor distinct from FcgammaRII via its C-terminal domain: role in MV-induced immunosuppression
Authors:Laine David  Trescol-Biémont Marie-Claude  Longhi Sonia  Libeau Geneviève  Marie Julien C  Vidalain Pierre-Olivier  Azocar Olga  Diallo Adama  Canard Bruno  Rabourdin-Combe Chantal  Valentin Hélène
Institution:Laboratoire d'Immunobiologie Fondamentale et Clinique, INSERM U503, IFR128 BioSciences Lyon-Gerland, 69365 Lyon Cedex 07, France.
Abstract:During acute measles virus (MV) infection, an efficient immune response occurs, followed by a transient but profound immunosuppression. MV nucleoprotein (MV-N) has been reported to induce both cellular and humoral immune responses and paradoxically to account for immunosuppression. Thus far, this latter activity has been attributed to MV-N binding to human and murine FcgammaRII. Here, we show that apoptosis of MV-infected human thymic epithelial cells (TEC) allows the release of MV-N in the extracellular compartment. This extracellular N is then able to bind either to MV-infected or uninfected TEC. We show that recombinant MV-N specifically binds to a membrane protein receptor, different from FcgammaRII, highly expressed on the cell surface of TEC. This new receptor is referred to as nucleoprotein receptor (NR). In addition, different Ns from other MV-related morbilliviruses can also bind to FcgammaRII and/or NR. We show that the region of MV-N responsible for binding to NR maps to the C-terminal fragment (N(TAIL)). Binding of MV-N to NR on TEC triggers sustained calcium influx and inhibits spontaneous cell proliferation by arresting cells in the G(0) and G(1) phases of the cell cycle. Finally, MV-N binds to both constitutively expressed NR on a large spectrum of cells from different species and to human activated T cells, leading to suppression of their proliferation. These results provide evidence that MV-N, after release in the extracellular compartment, binds to NR and thereby plays a role in MV-induced immunosuppression.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号