首页 | 本学科首页   官方微博 | 高级检索  
     


Cytochrome c1 exhibits two binding sites for cytochrome c in plants
Authors:Blas Moreno-Beltrá  n,Antonio Dí  az-Quintana,Katiuska Gonzá  lez-Arzola,Adriá  n Velá  zquez-Campoy,Miguel A. De la Rosa,Irene Dí  az-Moreno
Affiliation:1. Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, Sevilla 41092, Spain;2. Institute of Biocomputation and Physics of Complex Systems (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain;3. Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain;4. Fundacion ARAID, Government of Aragon, Maria de Luna 11, 50018, Zaragoza, Spain
Abstract:In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a “floating boat bridge” of cytochrome c molecules (between complexes III and IV) in plant respirasome.
Keywords:AIRs, ambiguous interaction restraints   AU, analytical ultracentrifugation   BD, Brownian dynamics   Cc, cytochrome c   Cc1, cytochrome c1   Cc2, cytochrome c2   Cbc1, cytochrome bc1 complex   CcO, cytochrome c oxidase complex   Cf, cytochrome f   CD, circular dichroism   CSP, chemical-shift perturbations   ET, electron transfer   GALDH, l-galactono-1,4-lactone dehydrogenase   HADDOCK, High Ambiguity Driven Docking approach   HSQC, heteronuclear single-quantum correlation   ITC, isothermal titration calorimetry   MD, molecular dynamics   NMR, nuclear magnetic resonance   PCA, principal component analysis   pCc, plant cytochrome c   pCcred, reduced plant cytochrome c   pCcox, oxidized plant cytochrome c   pCc1, plant Cytochrome c1   pCc1ox, oxidized plant cytochrome c1   pCc1red, reduced plant cytochrome c1   pRieske, plant Rieske
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号