首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamics of the active site architecture in plant-type ferredoxin-NADP reductases catalytic complexes
Authors:Ana Sá  nchez-Azqueta,Daniela L. Catalano-Dupuy,Arleth Ló  pez-Rivero,Marí  a Laura Tondo,Elena G. Orellano,Eduardo A. Ceccarelli,Milagros Medina
Affiliation:1. Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain;2. Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Unidad Asociada BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain;3. Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
Abstract:Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP+ reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP+ coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor–acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution.
Keywords:FNR, ferredoxin-NADP+ reductase   FPR, bacterial-type FNR   AnFNR, FNR from the cyanobacterium Anabaena PCC 7119   PsFNR, FNR from Pisum sativum   XaFPR, FPR from Xanthomonas axonopodis pv. citri   EcFPR, FPR from Escherichia coli   FNRox, FNR in the fully oxidised state   FNRhq, FNR in the anionic hydroquinone (fully reduced) state   HT, hydride transfer   DT, deuteride transfer   WT, wild-type   CTC, charge&ndash  transfer complex   CTC-1, FNRox:NADPH CTC   CTC-2, FNRhq:NADP+ CTC   2&prime  -P-AMP, 2&prime  -P-AMP moiety of NADP(H)   N5-FAD, N5 hydride donor/acceptor of the FADH&minus  /FAD isoalloxazine ring of FNR   C4-NADP(H), C4 hydride acceptor/donor of the NADP+/NADPH nicotinamide ring   NADPD, (4R)-4-2H-NADPH   k  &rarr     B, k  &rarr     C, apparent/observed rate constants obtained by global analysis of spectral kinetic data   kHT, kDT, kobsHT, kobsDT, limiting hydride and deuteride transfer first-order rate constants for the reduction of FNR and their corresponding observed values under particular conditions   KIE, kinetic isotope effect on rate constants   AH, AD, Arrhenius pre-exponential factors for hydride and deuteride, respectively   EaH, EaD, activation energies for hydride transfer and deuteride transfer, respectively   DAD, donor&ndash  acceptor distance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号