首页 | 本学科首页   官方微博 | 高级检索  
   检索      


YspD: A Potential Therapeutic Target for Drug Design to Combat Yersinia enterocolitica Infection
Authors:Mandal  Debjani  Mandal  Debabrata  Basu  Abhishek
Institution:1.Department of Molecular Biology and Biotechnology, Sripat Singh College, University of Kalyani, Murshidabad, India
;2.Department of Zoology, Sripat Singh College, University of Kalyani, Murshidabad, India
;
Abstract:

YspD is an annotated hydrophilic translocator of Ysa–Ysp type III secretion system of Yersinia enterocolitica. YspD has sequence, secondary structure and three-dimensional structure similar to other hydrophilic translocators. All hydrophilic translocators lack transmembrane region and possess intramolecular coiled-coil region. Disordered regions are mostly clustered at the N-terminal. Large loops provide flexibility, allowing conformational changes during oligomerization and protein–protein interaction. LcrV and PcrV have globular N-terminal and C-terminal domains, connected by intramolecular coiled-coil region. YspD, IpaD, SipD and BipD lack globular N-terminal and C-terminal domains. Their N-terminal and C-terminal domain have a bundle like structure connected by the intramolecular coiled-coil. The intramolecular coiled-coil regions (helix-5&9) of YspD showed maximum conservation, followed by helices at N-terminal. Polar interactions are mainly involved during dimerization of YspD, involving polar residues from helix-9 of both the YspD molecules. A methionine forms the boundary of interaction between the two YspD molecules. The two YspD molecules are arranged in antiparallel fashion to form the dimer. N-terminal of YspB interacted with C-terminal of YspD molecule to form a pentameric complex, consisting four YspD molecules and one YspB molecule. Sequence, structural similarity and presence of specific motifs in YspD (like chaperone protein) indicate the ability of N-terminal domain to show self-chaperoning activity and regulate folding and conformational state of YspD during its journey from the bacterial cytoplasm to the needle tip. Structural analysis of YspD and its mechanism of interaction with other proteins would enable us to design drugs against this hydrophilic protein to combat Yersinia infection.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号