首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adaptive Response to Cold Temperatures in Vibrio vulnificus
Authors:Patrick J Bryan  Robert J Steffan  Angelo DePaola  John W Foster  Asim K Bej
Institution:(1) Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA , US;(2) Envirogen, Inc., 4100 Quakerbridge Road, Lawrenceville, NJ 08648, USA , US;(3) U.S. Food and Drug Administration, Gulf Coast Seafood Laboratory, Dauphin Island, AL 36528, USA , US;(4) Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688, USA , US
Abstract:The effectiveness of rapid chilling or freezing of oysters to reduce Vibrio vulnificus levels in shellfish may be compromised by product handling procedures that permit cold adaptation. When a V. vulnificus culture was shifted from 35°C to 6°C conditions, it underwent transition to a non-culturable state. Cells adapted to 15°C prior to change to 6°C condition, however, remain viable and culturable. In addition, cultures adapted to 15°C were able to survive better upon freezing at −78°C compared with cultures frozen directly from 35°C. Inhibition of protein synthesis by addition of chloramphenicol in a V. vulnificus culture immediately prior to the exposure to the adaptive temperature eliminated inducible cold tolerance. These results suggest that cold-adaptive “protective” proteins may enhance survival and tolerance at cold temperatures. In addition, removal of iron from the growth medium by adding 2,2′-Dipyridyl prior to cold adaptation decreased the viability by approximately 2 logarithm levels. This suggests that iron plays an important role in adaptation at cold temperatures. Analysis of total cellular proteins on an SDS polyacrylamide gel electrophoresis, labeled with 35S-methionine during exposure at 15°C, showed elevated expressions of a 6-kDa and a 40-kDa protein and decreased expression of an 80-kDa protein. These results suggest that, for V. vulnificus, survival and tolerance at cold temperatures could be due to the expression of cold-adaptive proteins other than previously documented major cold shock proteins such as CS7.4 and CsdA. In this study, for the first time we have shown that exposure to an intermediate cold temperature (15°C) causes a cold adaptive response, helping this pathogen remain in culturable state when exposed to a much colder temperature (6°C). This adaptive nature to cold temperatures could be important for shellfish industry efforts to reduce the risk of V. vulnificus infection from consuming raw oysters. Received: 30 July 1998 / Accepted: 1 October 1998
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号