The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence |
| |
Authors: | Adam S. Hadley Matthew G. Betts |
| |
Affiliation: | Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97333, USA |
| |
Abstract: | Animal‐mediated pollination is essential for both ecosystem services and conservation of global biodiversity, but a growing body of work reveals that it is negatively affected by anthropogenic disturbance. Landscape‐scale disturbance results in two often inter‐related processes: (1) habitat loss, (2) disruptions of habitat configuration (i.e. fragmentation). Understanding the relative effects of such processes is critical in designing effective management strategies to limit pollination and pollinator decline. We reviewed existing published work from 1989 to 2009 and found that only six of 303 studies considering the influence of landscape context on pollination separated the effects of habitat loss from fragmentation. We provide a synthesis of the current landscape, behavioural, and pollination ecology literature in order to present preliminary multiple working hypotheses explaining how these two landscape processes might independently influence pollination dynamics. Landscape disturbance primarily influences three components of pollination interactions: pollinator density, movement, and plant demography. We argue that effects of habitat loss on each of these components are likely to differ substantially from the effects of fragmentation, which is likely to be more complex and may influence each pollination component in contrasting ways. The interdependency between plants and animals inherent to pollination systems also has the possibility to drive cumulative effects of fragmentation, initiating negative feedback loops between animals and the plants they pollinate. Alternatively, due to their asymmetrical structure, pollination networks may be relatively robust to fragmentation. Despite the potential importance of independent effects of habitat fragmentation, its effects on pollination remain largely untested. We postulate that variation across studies in the effects of ‘fragmentation’ owes much to artifacts of the sampling regimes adopted, particularly (1) incorrectly separating fragmentation from habitat loss, and (2) mis‐matches in spatial scale between landscapes studied and the ecological processes of interest. The field of landscape pollination ecology could be greatly advanced through the consideration and quantification of the matrix, landscape functional connectivity, and pollinator movement behaviour in response to these elements. Studies designed to disentangle the independent effects of habitat loss and fragmentation are essential for gaining insight into landscape‐mediated pollination declines, implementing effective conservation measures, and optimizing ecosystem services in complex landscapes. |
| |
Keywords: | behavioural ecology conservation habitat fragmentation habitat loss landscape ecology pollination ecology pollinator movement species interactions |
|
|