Abstract: | The EXG1 gene of Saccharomyces cerevisiae was cloned and identified by complementation of a mutant strain (exg1-2) with highly reduced extracellular exo-beta-1,3-glucanase (EXG) activity. Two recombinant plasmids containing an overlapping region of 5.2 kb were isolated from a genomic DNA library and characterized by restriction mapping. The coding region was located by subcloning the original DNA inserts in a 2.7-kb HindIII-XhoI fragment. Exg+ strains and Exg- mutants transformed with yeast multicopy plasmids containing this DNA fragment showed an EXG activity 5- to 20-fold higher than for the untransformed Exg+ wild-type (wt) strains. The overproduced EXG had the same enzymic activity on different substrates, and showed the same electrophoretic behaviour on polyacrylamide gels and identical properties upon filtration through Sephacryl S-200 as those of the main EXG from Exg+ wt strains. The EXG1 gene transformed Schizosaccharomyces pombe, yielding extracellular EXG activity which showed cross-reactivity with anti-S. cervisiae EXG antibodies. A fragment including only a part of the EXG1 region was subcloned into the integrating vector YIp5, and the resulting plasmid was used to transform an Exg+ strain. Genetic and Southern analysis of several stable Exg- transformants showed that the fragment integrated by homology with the EXG1 locus. The chromosomal DNA fragment into which the plasmid integrated has a restriction pattern identical to that of the fragment on which we had previously identified the putative EXG1 gene. Only one copy of the EXG1 gene per genome was found in several strains tested by Southern analysis. Furthermore, two additional recombinant plasmids sharing a yeast DNA fragment of about 4.1 kb, which partially complements the exg1-2 mutation but which shows no homology with the 2.7-kb fragment containing the EXG1 gene, were also identified in this study. This 4.1-kb DNA fragment does not appear to contain an extragenic suppressor and could be related in some way to EXG production in S. cerevisiae. |