首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ku80 binds to human replication origins prior to the assembly of the ORC complex
Authors:Sibani Sahar  Price Gerald B  Zannis-Hadjopoulos Maria
Institution:McGill Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6.
Abstract:The Ku heterodimer, an abundant nuclear protein, binds DNA replication origins in a sequence-specific manner and promotes initiation. In this study, using HCT116 Ku80+/- haplo-insufficient and Orc2(delta/-) hypomorphic cells, the order of binding of Ku and the human origin recognition complex (HsORC) was determined. The nuclear expression of Ku80 was found to be decreased by 60% in Ku80+/- cells, while its general association with chromatin was decreased by 33%. Coimmunoprecipitation studies indicated that the Ku heterodimer associates specifically with the human HsOrc-2, -3, -4, and -6 subunits. Chromatin immunoprecipitation (ChIP) experiments, using cells synchronized to late G1, showed that the association of Ku80 with the lamin B2, beta-globin, and c-myc origins in vivo was decreased by 1.5-, 2.3-, and 2.5-fold, respectively, in Ku80+/- cells. The association of HsOrc-3, -4, and -6 was consistently decreased in all three origins examined in Ku80+/- cells, while that of HsOrc-2 showed no significant variation, indicating that the HsOrc-3, -4, and -6 subunits bind to the origins after Ku80. In Orc2(delta/-) cells, the association of HsOrc-2 with the lamin B2, beta-globin, and c-myc origins was decreased by 2.8-, 4.9-, and 2.8-fold, respectively, relative to wild-type HCT116 cells. Furthermore, nascent strand abundance at these three origins was decreased by 4.5-, 2.3-, and 2.6-fold in Orc2(delta/-) relative to HCT116 cells, respectively. Interestingly, the association of Ku80 with these origins was not affected in this hypomorphic cell line, indicating that Ku and HsOrc-2 bind to origins independently of each other.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号