首页 | 本学科首页   官方微博 | 高级检索  
   检索      


SHIFTS IN BILATERAL ASYMMETRY WITHIN A DISTRIBUTION RANGE: THE CASE OF THE CHUKAR PARTRIDGE
Authors:Salit  Kark
Institution:Department of Biological Sciences, 371 Serra Mall, Stanford University, Stanford, California 94305-5020 E-mail:
Abstract:Abstract Three major types of bilateral asymmetry (fluctuating asymmetry, directional asymmetry, and antisymmetry) have long been recognized in the literature. Little, however, is known about transitions between asymmetry types, especially in natural populations. It is often assumed that directional asymmetry and antisymmetry have a larger genetic basis than fluctuating asymmetry. This leads many scientists to exclude traits or populations showing either directional asymmetry or antisymmetry from developmental instability studies, focusing attention on fluctuating asymmetry alone. This procedure may bias the findings and thus our understanding of patterns of bilateral asymmetry and the factors influencing it. To examine changes in bilateral asymmetry across the distribution range of a species, I studied the length of the third toe in 11 chukar partridge (Alectoris chukar) populations across a steep environmental gradient of 320 km within the species' range in Israel. This trait was selected due to its adaptive value in the chukar, a species that spends much of its activity walking, and due to its high measurement repeatability. Moving from the core toward the very extreme periphery of the range, the following four trends are detected: (1) the expression of the directional asymmetry component significantly increases; (2) the frequency of symmetrical individuals in the population significantly decreases, with a sharp decline at the steepest part of the climatic and environmental gradient studied, within the Mediterranean‐desert ecotone; (3) mean asymmetry levels, as estimated using the unsigned difference between the right and left toe, significantly increases; and (4) the range of asymmetry increases such that the most asymmetrical individuals originate from the very edge of the range. These findings provide primary evidence that substantial shifts in asymmetry may occur across short geographical distances within a species' distribution range. They show a continuum between asymmetry types and support the notion that all three types of asymmetry can reflect developmental instability. Further studies of developmental instability should be designed so that they enable detection of transitions between asymmetry types across natural populations. Such a procedure may partly resolve some of the contradictions seen in the literature regarding the relationship between bilateral asymmetry and environmental stress.
Keywords:Alectoris chukar            core-periphery  developmental instability  directional asymmetry  distribution range  ecotone  fluctuating asymmetry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号