首页 | 本学科首页   官方微博 | 高级检索  
     


Ten members of the Arabidopsis gene family encoding methyl-CpG-binding domain proteins are transcriptionally active and at least one,AtMBD11, is crucial for normal development
Authors:Berg Anita  Meza Trine J  Mahić Mirela  Thorstensen Tage  Kristiansen Kjetil  Aalen Reidunn B
Affiliation:Division of Cell and Molecular Biology, Department of Biology, University of Oslo, PO Box 1031 Blindern, N-0315 Oslo, Norway.
Abstract:Animal proteins that contain a methyl-CpG-binding domain (MBD) are suggested to provide a link between DNA methylation, chromatin remodelling and gene silencing. However, some MBD proteins reside in chromatin remodelling complexes, but do not have specific affinity for methylated DNA. It has recently been shown that the Arabidopsis genome contains 12 putative genes encoding proteins with domains similar to MBD, of which at least three bind symmetrically methylated DNA. Using a bioinformatics approach, we have identified additional domains in a number of these proteins and, on this basis and extended sequence similarity, divided the proteins into subgroups. Using RT-PCR we show that 10 of the AtMBD genes are active and differentially expressed in diverse tissues. To investigate the biological significance of AtMBD proteins, we have transformed Arabidopsis with a construct aimed at RNA interference with expression of the AtMBD11 gene, normally active in most tissues. The resulting 35S::AtMBD11-RNAi plants displayed a variety of phenotypic effects, including aerial rosettes, serrated leaves, abnormal position of flowers, fertility problems and late flowering. Arabidopsis lines with reduced expression of genes involved in chromatin remodelling and transgene silencing show similar phenotypes. Our results suggest an important role for AtMBD proteins in plant development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号