首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899
Authors:Ormeño-Orrillo Ernesto  Rosenblueth Monica  Luyten Ellen  Vanderleyden Jos  Martínez-Romero Esperanza
Institution:Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, Mexico.;
Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.
Abstract:Three transposon mutants of Rhizobium tropici CIAT899 affected in lipopolysaccharide (LPS) biosynthesis were characterized and their maize rhizosphere and endophytic root colonization abilities were evaluated. The disrupted genes coded for the following putative products: the ATPase component of an O antigen ABC-2 type transporter ( wzt ), a nucleotide-sugar dehydratase ( lpsβ2 ) and a bifunctional enzyme producing GDP-mannose ( noeJ ). Electrophoretic analysis of affinity purified LPS showed that all mutants lacked the smooth LPS bands indicating an O antigen minus phenotype. In the noeJ mutant, the rough LPS band migrated faster than the parental band, suggesting a truncated LPS core. When inoculated individually, the wzt and noeJ mutants colonize the rhizosphere and root to a lower extent than the parental strain while no differences were observed between the lpsβ2 mutant and the parental strain. All mutants were impaired in competitive rhizosphere and root colonization. Pleiotropic effects of the mutations on known colonization traits such as motility and growth rate were observed, but they were not sufficient to explain the colonization behaviours. It was found that the LPS mutants were sensitive to the maize antimicrobial 6-methoxy-2-benzoxazolinone (MBOA). Only the combined effects of altered growth rate and susceptibility to maize antimicrobials could account for all the observed colonization phenotypes. The results suggest an involvement of the LPS in protecting R. tropici against maize defence response during rhizosphere and root colonization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号