首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Resealing to small solutes of white erythrocyte membranes after incubation with EDTA, Ca2+, salt, sucrose, phospholipase C
Authors:R B Moore  J F Manery
Institution:Department of Biochemistry, Medical Sciences Building, University of Toronto, Toronto M5S 1A8, Canada
Abstract:White, stable erythrocyte ghosts can recover their impermeability to small solutes after storage for several days in low-ionic-strength phosphate buffers at 0 °C. The accessibility, to their substrates, of the inner surface enzymes, glyceraldehyde-3-phosphate dehydrogenase, (G3PD), and NADH cytochrome c oxidoreductase, was used to assess resealing. The data from the two enzymes were confirmatory. None of the conditions used to investigate resealing altered the activity of the outer surface enzyme, acetylcholinesterase. Using G3PD activity, ghosts (freshly prepared by gentle stepwise hemolysis in hypotonic phosphate buffers and stored in 11 mm phosphate buffer, pH 7.4) were shown to be slightly sealed (33%). Incubation at 37 °C in the storage buffer with or without EDTA did not alter their permeability. Ionic strength rather than osmotic pressure appears to influence the sealing process since salt (286 mosm) elicited 91% sealing whereas sucrose (278 mosm) had little effect. Calcium in trace amounts caused resealing to 80%. Phospholipase C (C. welchii) completely abolished Ca2+-induced resealing. The data were highly reproducible although these ghosts were found to contain only 10 to 20% of the G3PD activity of the leaky ghosts prepared by shock hemolysis in 5 mm phosphate buffer, pH 8.0. The response to the resealing agents was similar regardless of the level of G3PD present. Neither calcium nor ETDA altered the chemical composition (sialic acid, cholesterol, phospholipid) of the membranes. The small amount (5%) of nonspecific loosely bound protein lost during incubation, could not be attributed to any of the test agents. The results suggest that calcium induced the recovery of impermeability by altering the association, distribution, and/or conformation of the proteins and phospholipids within the membrane.
Keywords:To whom reprint requests and correspondence should be sent  
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号