首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cold-induced calcium elevation triggers DNA fragmentation in immature pig oocytes
Authors:Mattioli Mauro  Barboni Barbara  Gioia Luisa  Loi Pasqualino  Luisa Gioia
Institution:Dipartimento di Strutture, Funzioni e Patologie Animali e Biotecnologie, Fisiologia Veterinaria, Università di Teramo, Italy. mattioli@ifv.vet.unite.it
Abstract:Fluo-4 loaded immature oocytes were cooled from 30 degrees C to various lower temperatures between 20 and 10 degrees C and changes in intracellular calcium (Ca(2+)) levels were measured. Pig oocytes cooled to 14 degrees C exhibited a clear biphasic Ca(2+) rise. Lower temperatures produced similar responses, while higher temperatures did not exert any effect. The Ca(2+) response appeared to rely on ryanodine dependent stores as removal of extracellular Ca(2+) and intracytoplasmic injection of heparin did not modify cold-induced Ca(2+) elevation, while procaine or ruthenium red virtually eliminated the response. Confocal analysis of subcellular Ca(2+) distribution during cooling revealed that the ion rises sharply within the nucleus. As Ca(2+) imbalance may activate nuclear endonucleases, DNA integrity of cooled pig oocytes was evaluated by TUNEL and comet assays. Most cooled oocytes showed clear signs of DNA fragmentation. Oocytes injected with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetracetic acid tetrapotassium salt (BAPTA), a Ca(2+) chelator, maintained their DNA integrity thus confirming that intracellular Ca(2+) is involved in triggering DNA fragmentation. The protective effect exerted by ruthenium red and/or procaine further confirmed this hypothesis. These data show that a moderate and transient cooling is sufficient to cause an intracellular Ca(2+) rise that leads to DNA damage. The addition of inhibitors of ryanodine dependent Ca(2+) stores may represent a valuable protective treatment to reduce chilling injuries.
Keywords:low temperature  chilling injuries  ion imbalance
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号