首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acclimation of the Hermatypic Coral Stylophora pistillata to Bright Light
Authors:Titlyanov  E A  Titlyanova  T V  van Woesik  R  Yamazato  K
Institution:1.Institute of Marine Biology, Far East Branch,Russian Academy of Sciences,Vladivostok,Russia;2.Sesoko Station, Tropical Biosphere Research Centre,University of the Ryukyus,Okinawa,Japan;3.Department of Marine Sciences,University of the Ryukyus,Nishihara, Okinawa,Japan
Abstract:Photoacclimation dynamics to bright light was studied in the symbiotic reef-building coral Stylophora pistillata. Coral colonies were collected from shallow shaded sites (2 m, 40–20% PARs) from a fringing reef at Sesoko Island, Okinawa, Japan. Outer branches were broken off from the colonies and placed in an outdoor aquarium until the start of the experiments. After maintenance of the branches in an aquarium under a light intensity of 30% PARs for 30 days (experiment 1) or for 90 days (experiment 2), the samples were exposed to 95% PARs for 120 days in the same aquarium. The population density of zooxanthellae, chlorophyll concentration, locations of zooxanthellae, proliferating zooxanthellae frequency (PZF), and degrading zooxanthellae frequency (DZF) were examined. It was shown that after acclimation of coral branches to bright light, the population density of zooxanthellae, chlorophyll concentration calculated per 1000 polyps, and chlorophyll concentration in zooxanthellae decreased. The size of zooxanthellae significantly decreased. A decrease in the population density of zooxanthellae was detected by the eighth day of acclimation, and stabilization in the density of the symbionts occurred in the period from the 40th to the 60th day of the experiment. The chlorophyll concentration in zooxanthellae significantly decreased by the second day of exposure to bright light and stabilized by the fourth day. The PZF level sharply dropped on the second day, while the DZF level sharply increased and was higher than the PZF level for 40 days of exposure to bright light. We conclude, therefore, that the population density of zooxanthellae is regulated by the rates of two processes: cell division and the cell degradation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号