首页 | 本学科首页   官方微博 | 高级检索  
     


Brassinosteroids Positively Modulate Growth: Physiological,Biochemical and Anatomical Evidence Using Two Tomato Genotypes Contrasting to Dwarfism
Authors:Camille?Ferreira?Maia,Breno?Ricardo?Serr?o da?Silva,Allan?Klynger da?Silva?Lobato  author-information"  >  author-information__contact u-icon-before"  >  mailto:allanllobato@yahoo.com.br"   title="  allanllobato@yahoo.com.br"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile
Affiliation:1.Núcleo de Pesquisa Vegetal Básica e Aplicada,Universidade Federal Rural da Amaz?nia, Paragominas,Paragominas,Brazil
Abstract:Growth and development are vital processes in the life cycles of plants. Brassinosteroids (BRs) are steroids that when exogenously applied can regulate several biological responses. The aim of this research was to investigate the possible interferences caused by the exogenous application of BR on growth and metabolism using two genotypes of the DWARF gene, MT-d and MT-D, that are BR-deficient and BR-efficient, respectively. The experiment had four treatments with two genotypes (BR-efficient and BR-deficient) and two levels of brassinosteroids (0 and 100 nM BR, described as ??BR and +?BR, respectively). This study revealed that the exogenous application of BR promoted improvement in growth, inducing increases in all variables of both genotypes evaluated. In general, BR-deficient plants sprayed with BR had effects more intense, confirming the benefits of this steroid on photosynthetic apparatus and gas exchange. The changes in the anatomical characteristics of the leaf are related to the contribution of BR on the influx and consequent fixation of CO2. In addition, modifications related to root anatomy occurred as a result of the BR action with the purpose of increasing the root protection and absorption of water and nutrients. Increases in photosynthetic pigments suggest that the role of BR is linked with chlorophyll biosynthesis and the maintenance of chloroplast integrity, resulting from associations with the increases found in the activities of antioxidant enzymes that modulate the accumulation of reactive oxygen species.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号