首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Changes in cytosolic calcium monitored by inward currents during action potentials in guinea-pig ventricular cells
Authors:D A Terrar  E White
Institution:University Department of Pharmacology, Oxford, U.K.
Abstract:Action potentials were recorded from single cells isolated from guinea-pig ventricular muscle. Contraction was measured with an optical technique. Tail currents thought to be activated by cytosolic calcium were recorded when action potentials were interrupted by application of a voltage-clamp. A family of tail currents was recorded by interrupting the action potential at various times after the upstroke. The envelope of tail current amplitudes was taken as an index of changes in cytosolic calcium. Consistent with this interpretation, tail currents were negligible following intracellular loading with the calcium chelator BAPTA to suppress calcium transients. The cytosolic calcium transient estimated from the envelope of tails reached a peak approximately 50 ms after the upstroke of the action potential, and fell close to diastolic levels before repolarization was complete; 10 mM caffeine delayed the time to peak contraction, and caused a prolongation of the cytosolic calcium transient estimated from the envelope of tail currents. Caffeine also induced the appearance of a distinct late plateau phase of the action potential. Intracellular BAPTA suppressed the late plateau, contraction and tail currents in cells exposed to caffeine. Exposure to caffeine increased the time constant for decay of tail currents (from approximately 25 to 70 ms). When action potentials were greatly abbreviated by interruption with a voltage-clamp, a progressive decline occurred in the subsequent three contractions and tail currents. There was a progressive reversal of these effects over four responses when the full action potential duration was restored. None of these effects was observed in cells exposed to caffeine. Calcium-activated tail currents appear to be a useful qualitative index of changes in cytosolic calcium. The observations are consistent with the suggestion that cytosolic calcium is reduced during the plateau by a combination of calcium extrusion through Na-Ca exchange and calcium uptake into caffeine-sensitive stores. It also appears that reduction of stores loading during abbreviated action potentials reduces subsequent contraction in cells not exposed to caffeine.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号