首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA Sequence Effects on Single Base Deletions Arising during DNA Polymerization in Vitro by Escherichia Coli Klenow Fragment Polymerase
Authors:F J Wang and  L S Ripley
Institution:Department of Microbiology and Molecular Biology, UMD-New Jersey Medical School, Newark, New Jersey 07103
Abstract:Most single base deletions detected after DNA polymerization in vitro directed by either Escherichia coli DNA polymerase I or its Klenow fragment are opposite Pu in the template. The most frequent study, were previously found to be associated with the consensus template context 5'-PyTPu-3'. In this study, the predictive power of the consensus sequence on single base deletion frequencies was directly tested by parallel comparison of mutations arising in four related DNAs differing by a single base. G, a deletion hotspot within the template context 5'-TTGA-3', was substituted by each of the 3 other bases. Previous studies had shown that deletions opposite the G were frequent but that deletions opposite its neighboring A were never detected. Based on the predictions of the consensus, the substitution of T for G should produce frequent deletions opposite the neighboring A due to its new 5'-TTTA-3' template context. This prediction was fulfilled; no deletions of this A were detected in the other templates. The consensus further predicted that deletions opposite template C would be lower than those opposite either A or G at the same site and this prediction was also fulfilled. The C substitution also produced a new hotspot for 1 bp deletions 14 bp away. The new hotspot depends on quasi-palindromic misalignment of the newly synthesized DNA strand during polymerization; accurate, but ectopically templated synthesis is responsible for this mutagenesis. Mutations templated by quasi-palindromic misalignments have previously been recognized when they produced complex sequence changes; here we show that this mechanism can produce frequent single base deletions. The unique stimulation of misalignment mutagenesis by the C substitution in the template is consistent with the singular ability of C at that site to contribute to extended complementary pairing during the DNA misalignment that precedes mutagenesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号