首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Delineation of exoenzyme S residues that mediate the interaction with 14-3-3 and its biological activity
Authors:Yasmin Lubna  Jansson Anna L  Panahandeh Tooba  Palmer Ruth H  Francis Matthew S  Hallberg Bengt
Institution:Department of Medical Biosciences/Pathology, Ume? University, Sweden.
Abstract:14-3-3 proteins belong to a family of conserved molecules expressed in all eukaryotic cells, which play an important role in a multitude of signaling pathways. 14-3-3 proteins bind to phosphoserine/phosphothreonine motifs in a sequence-specific manner. More than 200 14-3-3 binding partners have been found that are involved in cell cycle regulation, apoptosis, stress responses, cell metabolism and malignant transformation. A phosphorylation-independent interaction has been reported to occur between 14-3-3 and a C-terminal domain within exoenzyme S (ExoS), a bacterial ADP-ribosyltransferase toxin from Pseudomonas aeruginosa. In this study, we have investigated the effect of amino acid mutations in this C-terminal domain of ExoS on ADP-ribosyltransferase activity and the 14-3-3 interaction. Our results suggest that leucine-428 of ExoS is the most critical residue for ExoS enzymatic activity, as cytotoxicity analysis reveals that substitution of this leucine significantly weakens the ability of ExoS to mediate cell death. Leucine-428 is also required for the ability of ExoS to modify the eukaryotic endogenous target Ras. Finally, single amino acid substitutions of positions 426-428 reduce the interaction potential of 14-3-3 with ExoS in vitro.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号