首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modelling, simulation and optimisation of a human vertical jump.
Authors:T Sp?gele  A Kistner  A Gollhofer
Institution:Institute A of Mechanics, University of Stuttgart, Germany.
Abstract:This paper describes an efficient biomechanical model of the human lower limb with the aim of simulating a real human jump movement consisting of an upword propulsion, a flying and a landing phase. A multiphase optimal control technique is used to solve the muscle force sharing problem. To understand how intermuscular control coordinates limb muscle excitations, the human body is reduced to a single lower limb consisting of three rigid bodies. The biomechanical system is activated by nine muscle-tendon actuators representing the basic properties of muscles during force generation. For the calculation of the minimal muscle excitations of the jump movement, the trajectory of the hip joint is given as a rheonomic constraint and the contact forces (ground reaction forces) are determined by force plates. Based on the designed musculoskeletal model and on the differential equations of the multibody system, muscle excitations and muscle forces necessary for a vertical jump movement are calculated. The validity of the system is assessed comparing the calculated muscle excitations with the registered surface electromyogramm (EMG) of the muscles. The achieved results indicate a close relationship between the predicted and the measured parameters.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号