Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels |
| |
Authors: | Frénal Karine Xu Chen-Qi Wolff Nicolas Wecker Karine Gurrola Georgina B Zhu Shun-Yi Chi Cheng-Wu Possani Lourival D Tytgat Jan Delepierre Muriel |
| |
Affiliation: | Unité de RMN des Biomolécules URA 2185 CNRS, Institut Pasteur, Paris, France. |
| |
Abstract: | The gamma-KTx-type scorpion toxins specific for K+ channels were found to interact with ERG channels on the turret region, while alpha-KTx3.2 Agitoxin-2 binds to the pore region of the Shaker K+ channel, and alpha-KTx5.3 BmP05 binds to the intermediate region of the small-conductance calcium-activated K-channel (SK(Ca)). In order to explore the critical residues for gamma-KTx binding, we determined the NMR structure of native gamma-KTx1.1 (CnErg1), a 42 amino acid residues scorpion toxin isolated from the venom of the Mexican scorpion Centruro?des noxius Hoffmann, and we used computational evolutionary trace (ET) analysis to predict possible structural and functional features of interacting surfaces. The 1H-NMR three-dimensional solution structure of native ergtoxin (CnErg1) was solved using a total of 452 distance constraints, 13 3J(NH-Halpha) and 10 hydrogen bonds. The structure is characterized by 2 segments of alpha-helices and a triple-stranded antiparallel beta-sheet stabilized by 4 disulfide bridges. The ET and structural analysis provided indication of the presence of two important amino acid residue clusters, one hydrophobic and the other hydrophilic, that should be involved in the surface contact between the toxin and the channel. Some features of the proposed interacting surface are discussed. |
| |
Keywords: | ERG channel ergtoxin evolutionary trace analysis NMR structure scorpion toxin |
本文献已被 PubMed 等数据库收录! |
|