首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the catalytic mechanism of yeast inorganic pyrophosphatase
Authors:W B Knight  S W Fitts  D Dunaway-Mariano
Abstract:P1,P2-Bidentate Co(NH3)4PP was found to be a competitive inhibitor of pyrophosphatase vs. MgPP (Kis = 8.7 mM, pH 7) and, in the presence of Mg2+, an active substrate as well. P1,P2-Bidentate Cr(III) complexes of pyrophosphate, imidodiphosphate, and methylenediphosphonate were also competitive inhibitors vs. MgPP (pH 5.9; Kis = 0.2, 0.2, and 0.4 mM, respectively). In the presence of Mg2+, P1,P2-bidentate Cr(H2O)4PP was found to have a Km 10-fold greater and a turnover number 36-fold smaller than MgPP at pH 5.9. Mg2+, Mn2+, Co2+, Zn2+, Cd2+, Ni2+, and Fe2+ activate the CrPP--pyrophosphatase reaction, while Ca2+ and Ba2+ are not activators but serve as competitive inhibitors vs. Mg2+ (Kis = 0.35 and 2.3 mM). At levels above 0.1 mM, Mn2+, Co2+, and Zn2+ show activator inhibition. Kinetic studies with CrPP and Mg2+ suggest that the kinetic mechanism is rapid equilibrium ordered, with CrPP adding before Mg2+. pH studies of the MgPP/Mg2+ reaction and the CrPP/Mg2+ reaction suggest that the active form of the substrate is (MgPP)2- and that the uncomplexed metal ion cofactor interacts with at least two active-site residues, one possibly via H bonding and the other by direct coordination. The former group (pKa = 5.6) appears on the basis of temperature and solvent perturbation studies to be a carboxylic acid. The MgPP reaction also requires that an active-site residue (pKa = 7.5) be protonated. Temperature and solvent perturbation studies suggest that this residue is an amine. A mechanism accounting for these observations is presented.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号