首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification,Purification, and Characterization of Transpeptidase and Glycosyltransferase Domains of Streptococcus pneumoniae Penicillin-Binding Protein 1a
Authors:Anne Marie Di Guilmi  Nicolas Mouz  Jean-Pierre Andrieu  JoAnn Hoskins  S Richard Jaskunas  Jean Gagnon  Otto Dideberg  Thierry Vernet
Institution:Institut de Biologie Structurale Jean-Pierre Ebel (CEA/CNRS), 38027 Grenoble Cedex 1, France,1. and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-04382.
Abstract:Resistance to β-lactam antibiotics in Streptococcus pneumoniae is due to alteration of penicillin-binding proteins (PBPs). S. pneumoniae PBP 1a belongs to the class A high-molecular-mass PBPs, which harbor transpeptidase (TP) and glycosyltransferase (GT) activities. The GT active site represents a new potential target for the generation of novel nonpenicillin antibiotics. The 683-amino-acid extracellular region of PBP 1a (PBP 1a*) was expressed in Escherichia coli as a GST fusion protein. The GST-PBP 1a* soluble protein was purified, and its domain organization was revealed by limited proteolysis. A protease-resistant fragment spanning Ser 264 to Arg 653 exhibited a reactivity profile against both β-lactams and substrate analogues similar to that of the parent protein. This protein fragment represents the TP domain. The GT domain (Ser 37 to Lys 263) was expressed as a recombinant GST fusion protein. Protection by moenomycin of the GT domain against trypsin degradation was interpreted as an interaction between the GT domain and the moenomycin.The synthesis of the bacterial cell wall requires cytoplasmic and periplasmic enzymes. The final steps of peptidoglycan biosynthesis occur outside the cytoplasmic membrane, and they are catalyzed by membrane-bound penicillin-binding proteins (PBPs). PBPs play essential roles in cell division and morphology (6, 20, 31). Based upon their molecular sizes and amino acid sequence similarities, PBPs can be classified into two groups (6): low-molecular-weight (low-Mr) PBPs, which act as d,d-carboxypeptidases, and high-molecular-weight (high-Mr) PBPs, which carry transpeptidase (TP) and glycosyltransferase (GT) activities. The high-Mr group can be further divided into bifunctional enzymes with TP and GT activities (class A) and monofunctional TP enzymes (class B).β-Lactam antibiotics bind with high affinity specifically to d,d-carboxypeptidase and TP domains because of their structural similarity to the natural substrates, the stem peptides. This binding results in the formation of a covalent acyl-PBP enzyme complex, leading to the inactivation of PBPs.High-Mr PBPs are multidomain proteins (6). The three-dimensional structure of Streptococcus pneumoniae PBP 2x (class B high-Mr PBP) illustrates this domain organization (25). The only non-penicillin-binding domain of known function is the GT domain, corresponding to the N-terminal region of class A PBPs. This GT activity, clearly identified in Escherichia coli PBP 1b, is difficult to measure (23, 29, 3135). It is insensitive to penicillin but sensitive to moenomycin, an antibiotic which is not used for human therapy (23, 29, 32, 33).S. pneumoniae is one of the major human pathogens of the upper respiratory tract, causing pneumonia, meningitis, and ear infections. Six PBPs have been identified in S. pneumoniae: high-Mr PBPs 1a, 1b, 2a, 2x, and 2b and low-Mr PBP 3 (8). PBPs 1a, 1b, and 2a belong to class A, while PBPs 2x and 2b are monofunctional class B proteins. Deletion of pbp2x and pbp2b in S. pneumoniae is lethal for the bacteria, while the deletion of pbp1a is tolerated (11), probably due to compensation by PBP 1b. This has been observed for E. coli class A PBP 1a, whose deletion can be compensated for by PBP 1b (36). In clinical isolates of resistant pneumococci, pbp1a, pbp2x, and pbp2b genes were shown to present a mosaic organization, encoding PBPs with reduced affinity for β-lactam antibiotics (2, 5, 15, 18). The specific resistance to ceftriaxone and cefotaxime of S. pneumoniae from the hospital environment is mediated by modification of PBP 2x and PBP 1a (22). Furthermore, gene transfer of pbp1a, pbp2x, and pbp2b from resistant strains conferred penicillin resistance on sensitive S. pneumoniae strains under laboratory conditions (24, 14, 15, 27, 30).The effort to overcome resistance to antibiotics in S. pneumoniae might therefore benefit from a detailed understanding of the molecular basis of TP and GT activities. The GT domain represents a new potential target for novel nonpenicillin antibiotics. Here, we delineate the GT and TP domains of S. pneumoniae PBP 1a* (a water-soluble form of PBP 1a) by limited proteolytic digestion and expression of recombinant domains. The TP activity of PBP 1a* and that of the isolated TP domain were compared. We also present evidence for an interaction between the isolated GT domain and moenomycin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号