首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of the Secondary Cell Wall Polymer on the Reassembly,Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2
Authors:Margit Sára  Christine Dekitsch  Harald F Mayer  Eva M Egelseer  Uwe B Sleytr
Institution:Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, 1180 Vienna, Austria
Abstract:The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein.Many bacteria and archaea possess crystalline bacterial cell surface layers (S-layers) as their outermost cell envelope component (3, 36, 38). S-layers are composed of identical protein or glycoprotein subunits which assemble into two-dimensional crystalline arrays showing oblique, square, or hexagonal lattice symmetry. S-layer subunits from bacteria are linked to each other and to the underlying cell envelope layer by noncovalent interactions and may therefore be isolated from whole cells or cell wall fragments by different procedures involving chaotropic agents, detergents, chelating agents, or high salt concentrations or by alkaline or acidic pH conditions. During removal of the disrupting agents, e.g., by dialysis, the S-layer subunits frequently reassemble into flat sheets or open-ended cylinders (in vitro self-assembly in suspension; for reviews, see references 37 and 38).Studies regarding the binding mechanism between the S-layer protein and the underlying cell envelope layer have shown that in gram-negative bacteria, the N-terminal region of the S-layer subunits recognizes specific lipopolysaccharides in the outer membrane (9, 29, 41). For Aeromonas hydrophila it was found, however, that the C-terminal part of the S-layer protein is essential for interaction with the outer membrane (40). A similar observation was reported for the S-layer protein from the gram-positive Corynebacterium glutamicum. A hydrophobic stretch of 21 amino acids located at the C-terminal end of the S-layer protein was found to interact with a hydrophobic layer in the cell wall proper that most probably consisted of mycolic acid (8). In earlier studies it was suggested that secondary cell wall polymers could represent the binding sites for the S-layer proteins from Bacillus sphaericus (15, 16) and Lactobacillus buchneri (24).Recently, a high-molecular-weight secondary cell wall polymer (SCWP) containing glucose and N-acetylglucosamine (GlcNAc) was extracted from peptidoglycan-containing sacculi of two Bacillus stearothermophilus wild-type strains (PV72/p6 and ATCC 12980 [10]). An SCWP of different chemical composition could be isolated from peptidoglycan-containing sacculi of an oxygen-induced variant strain from B. stearothermophilus PV72/p6 (35). The SCWP produced by this variant strain (B. stearothermophilus PV72/p2) is mainly composed of GlcNAc and N-acetylmannosamine (ManNAc) and shows a molecular weight of about 24,000 (33). Binding studies with proteolytic cleavage fragments and native peptidoglycan-containing sacculi revealed that the N-terminal region is involved in anchoring the S-layer subunits to the rigid cell wall layer (10, 11, 33). Several observations have supported the notion that a specific recognition and binding mechanism exists between the SCWP and the N-terminal region of the S-layer proteins from B. stearothermophilus strains. (i) Despite the overall heterogeneity, S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region and are capable of binding to an SCWP of identical chemical composition. (ii) B. stearothermophilus PV72/p6 and the oxygen-induced p2 variant produce an SCWP of different chemical composition and structure. (iii) The S-layer protein from B. stearothermophilus PV72/p2 did not recognize native peptidoglycan-containing sacculi from B. stearothermophilus wild-type strains as binding sites (35). (iv) The S-layer protein from B. stearothermophilus PV72/p6 (SbsA) and the oxygen-induced p2 variant (SbsB) are encoded by different genes which show little overall identity (19, 20), and only SbsB possesses a typical S-layer homologous (SLH) domain (23) at the N-terminal part.By sequence comparison, SLH domains (23) were identified on the N-terminal part of several S-layer proteins (6, 13, 23, 27, 30) or at the very C-terminal end of cell-associated exoenzymes and exoproteins (21, 22, 25, 26). SLH domains were suggested to anchor these proteins permanently or transiently to the cell surface. So far, evidence for a binding function of an SLH domain was provided for the S-layer protein of Thermus thermophilus (30) and for the outer-layer proteins of the cellulosome complex from Clostridium thermocellum (21, 22).In the present study, the influence of the SCWP on the formation of self-assembly products in suspension and on the recrystallization properties of the S-layer protein from B. stearothermophilus PV72/p2 on solid supports such as poly-l-lysine-coated electron microscopy (EM) grids was investigated. Moreover, studies on the stability of the S-layer protein against endoproteinase Glu-C attack in the presence and the absence of the SCWP were carried out.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号