首页 | 本学科首页   官方微博 | 高级检索  
     


Novel Temperature-Sensitive Mutants of Escherichia coli That Are Unable To Grow in the Absence of Wild-Type tRNA6Leu
Authors:Toru Nakayashiki  Hachiro Inokuchi
Affiliation:Department of Biophysics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Abstract:Escherichia coli has only a single copy of a gene for tRNA6Leu (Y. Komine et al., J. Mol. Biol. 212:579–598, 1990). The anticodon of this tRNA is CAA (the wobble position C is modified to O2-methylcytidine), and it recognizes the codon UUG. Since UUG is also recognized by tRNA4Leu, which has UAA (the wobble position U is modified to 5-carboxymethylaminomethyl-O2-methyluridine) as its anticodon, tRNA6Leu is not essential for protein synthesis. The BT63 strain has a mutation in the anticodon of tRNA6Leu with a change from CAA to CUA, which results in the amber suppressor activity of this strain (supP, Su+6). We isolated 18 temperature-sensitive (ts) mutants of the BT63 strain whose temperature sensitivity was complemented by introduction of the wild-type gene for tRNA6Leu. These tRNA6Leu-requiring mutants were classified into two groups. The 10 group I mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions. Overexpression of the gene for tRNA4Leu restored the growth of group I mutants at 42°C. Replacement of the CUG codon with UUG reduced the efficiency of translation in group I mutants. These results suggest that unmodified tRNA4Leu poorly recognizes the UUG codon at 42°C and that the wild-type tRNA6Leu is required for translation in order to maintain cell viability. The mutations in the six group II mutants were complemented by introduction of the gidA gene, which may be involved in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNA6Leu remains to be investigated.In the universal genetic code, 61 sense codons correspond to 20 amino acids, and the various tRNA species mediate the flow of information from the genetic code to amino acid sequences. Since codon-anticodon interactions permit wobble pairing at the third position, 32 tRNAs, including tRNAfMet, should theoretically be sufficient for a complete translation system. Although some organisms have fewer tRNAs (1), most have abundant tRNA species and multiple copies of major tRNAs. For example, Escherichia coli has 86 genes for tRNA (79 genes identified in reference 14, 6 new ones reported in reference 3, and one fMet tRNA at positions 2945406 to 2945482) that encode 46 different amino acid acceptor species. Although abundant genes for tRNAs are probably required for efficient translation, the significance of the apparently nonessential tRNAs has not been examined.E. coli has five isoaccepting species of tRNALeu. According to the wobble rule, tRNA1Leu recognizes only the CUG codon. The CUG codon is also recognized by tRNA3Leu (tRNA2Leu) and thus tRNA1Leu may not be essential for protein synthesis. Similarly, tRNA6Leu is supposed to recognize only the UUG codon, but tRNA4Leu can recognize both UUA and UUG codons. Thus, tRNA6Leu appears to be dispensable. The existence of an amber suppressor mutation of tRNA6Leu (supP, Su+6) supports this possibility. tRNA6Leu is encoded by a single-copy gene, leuX (supP), and Su+6 has a mutation in the anticodon, which suggests loss of the ability to recognize UUG (26). Why are so many species of tRNALeu required? Holmes et al. (12) examined the utilization of the isoaccepting species of tRNALeu in protein synthesis and showed that utilization differs depending on the growth medium; in minimal medium, isoacceptors tRNA2Leu (cited as tRNA3Leu; see Materials and Methods) and tRNA4Leu are the predominant species that are found bound to ribosomes, but an increased relative level of tRNA1Leu is found bound to ribosomes in rich medium. The existence of tRNA6Leu is puzzling. This isoaccepting tRNA accounts for approximately 10% of the tRNALeu in total-cell extracts. However, little if any tRNA6Leu is found on ribosomes in vivo, and it is also only weakly active in protein synthesis in vitro with mRNA from E. coli (12). It thus appears that tRNA6Leu is only minimally involved in protein synthesis in E. coli.To investigate the role of tRNA6Leu in E. coli, we attempted to isolate tRNA6Leu-requiring mutants from an Su+6 strain. These mutants required wild-type tRNA6Leu for survival at a nonpermissive temperature. We report here the isolation and the characterization of these mutants.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号