首页 | 本学科首页   官方微博 | 高级检索  
     


The Capsule and S-Layer: Two Independent and Yet Compatible Macromolecular Structures in Bacillus anthracis
Authors:St  phane Mesnage,Evelyne Tosi-Couture,Pierre Gounon,Mich  le Mock,Agn  s Fouet
Affiliation:Toxines et Pathogénie Bactériennes (CNRS URA 1858)1. and Station Centrale de Microscopie Electronique,2. Institut Pasteur, Paris, France
Abstract:Bacillus anthracis, the etiological agent of anthrax, is a gram-positive spore-forming bacterium. Fully virulent bacilli are toxinogenic and capsulated. Two abundant surface proteins, including the major antigen, are components of the B. anthracis surface layer (S-layer). The B. anthracis paracrystalline S-layer has previously only been found in noncapsulated vegetative cells. Here we report that the S-layer proteins are also synthesized under conditions where the poly-γ-d-glutamic acid capsule is present. Structural and immunological analyses show that the capsule is exterior to and completely covers the S-layer proteins. Nevertheless, analysis of single and double S-layer protein mutants shows that the presence of these proteins is not required for normal capsulation of the bacilli. Similarly, the S-layer proteins assemble as a two-dimensional crystal, even in the presence of the capsule. Thus, both structures are compatible, and yet neither is required for the correct formation of the other.

Bacillus anthracis, a gram-positive spore-forming bacterium, is the causative agent of anthrax. This disease, to which many animals, including humans, are susceptible, involves toxemia and septicemia. In the mammalian host, B. anthracis bacilli synthesize two toxins (lethal and edema toxins) (31) and a capsule (18) encoded by two large plasmids, pXO1 and pXO2, respectively (12, 21). The capsule is composed of poly-γ-d-glutamic acid and has antiphagocytic properties (13, 31, 37). Although unusual, a similar capsule is also found on Bacillus licheniformis bacilli (9). In the absence of pXO2 or the inducer bicarbonate, the cell does not produce a capsule and the cell wall appears layered. These layers are composed of fragments displaying a highly patterned ultrastructure (10, 16). This type of cell surface is now referred to as the surface layer (S-layer).S-layers are present on the surfaces of many archaea and bacteria (for reviews, see references 29 and 30). Most are formed by noncovalent, entropy-driven assembly of a single (glyco)protein protomer on the bacterial surface, giving rise to proteinaceous paracrystalline layers. Generally, a single S-layer is present, constituting 5 to 10% of total cell protein. Its synthesis is thus presumably energy consuming for the bacterium. Numerous bacteria have S-layers, suggesting that they play important roles in the interaction between the cell and its environment. Various functions have been proposed for S-layers, including shape maintenance and molecular sieving, and they can serve in phage fixation. The S-layer may be a virulence factor, protecting pathogenic bacteria against complement killing, facilitating binding of bacteria to host molecules, or enhancing their ability to associate with macrophages (for reviews, see references 27 and 29).Some bacteria, such as cyanobacteria or Azotobacter spp., possess both a capsule and an S-layer; however, to our knowledge, their structural relationships have not been analyzed through simultaneous genetic and cytologic studies. Both of these features have been independently described for the surface of the pathogenic bacterium B. anthracis. The components of the B. anthracis S-layer are two abundant surface proteins, EA1 and Sap (6, 20). Previous analyses of the B. anthracis S-layer used plasmid-cured strains; consequently, the interaction, if any, between the capsule and the S-layer could not be studied. Temporal or environmental regulation could be such that only one or the other structure is ever present at the cell surface. However, we show that S-layer proteins are synthesized under conditions where the bacilli are capsulated. We determined the localizations of capsule and S-layer components and analyzed whether the S-layer is necessary for proper capsulation. Finally, the assembly of the S-layer proteins in a two-dimensional crystal was examined in the presence of the capsule.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号