首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Substrate Ambiguity of 3-Deoxy-d-manno-Octulosonate 8-Phosphate Synthase from Neisseria gonorrhoeae in the Context of Its Membership in a Protein Family Containing a Subset of 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthases
Authors:Prem S Subramaniam  Gang Xie  Tianhui Xia  Roy A Jensen
Institution:Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
Abstract:3-Deoxy-d-manno-octulosonate 8-phosphate (KDOP) synthase and 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase catalyze similar phosphoenolpyruvate-utilizing reactions. The genome of Neisseria gonorrhoeae contains one gene encoding KDOP synthase and one gene encoding DAHP synthase. Of the two nonhomologous DAHP synthase families known, the N. gonorrhoeae protein belongs to the family I assemblage. KDOP synthase exhibited an ability to replace arabinose-5-P with either erythrose-4-P or ribose-5-P as alternative substrates. The results of periodate oxidation studies suggested that the product formed by KDOP synthase with erythrose-4-P as the substrate was 3-deoxy-d-ribo-heptulosonate 7-P, an isomer of DAHP. As expected, this product was not utilized as a substrate by dehydroquinate synthase. The significance of the ability of KDOP synthase to substitute erythrose-4-P for arabinose-5-P is (i) recognition of the possibility that the KDOP synthase might otherwise be mistaken for a species of DAHP synthase and (ii) the possibility that the broad-specificity type of KDOP synthase might be a relatively vulnerable target for antimicrobial agents which mimic the normal substrates. An analysis of sequences in the database indicates that the family I group of DAHP synthase has a previously unrecognized membership which includes the KDOP synthases. The KDOP synthases fall into a subfamily grouping which includes a small group of DAHP synthases. Thus, family I DAHP synthases separate into two subfamilies, one of which includes the KDOP synthases. The two subfamilies appear to have diverged prior to the acquisition of allosteric-control mechanisms for DAHP synthases. These allosteric control specificities are highly diverse and correlate with the presence of N-terminal extensions which lack homology with one another.3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) and 3-deoxy-d-manno-octulosonate 8-phosphate (KDOP) are analogous seven- and eight-carbon 2-keto-3-deoxy sugars that are synthesized by enzymes which belong to functionally unrelated pathways. DAHP synthase forms DAHP as the acyclic precursor of the aromatic amino acids in bacteria, lower eukaryotes, and plants (3); KDOP synthase is best known for its role in the formation of KDOP as a critical component of the lipopolysaccharide of gram-negative bacteria (37), but its distribution in nature has recently been recognized to be broader (13). Both enzymes catalyze an overall condensation of phosphoenolpyruvate (PEP) with an aldose, i.e., erythrose-4-phosphate (E4P) in the case of DAHP synthase and arabinose-5-phosphate (A5P) in the case of KDOP synthase. The reactions are irreversible and are not aldol-type condensations, which unfortunately has been implied by the Enzyme Commission naming that has been recommended for DAHP synthase.As might be expected from the close structural relationship of A5P and E4P, the reactions are strikingly similar. This similarity is reflected at the level of mechanistic detail (see reference 16 and references therein). DAHP synthase and KDOP synthase, along with enolpyruvoylshikimate 3-phosphate synthase and UDP-N-acetylglucosamine enolpyruvoyl transferase, comprise a small class of PEP-utilizing enzymes that catalyze C—O bond cleavage with respect to the release of Pi from PEP (1, 27). This contrasts with the more familiar nucleophilic attack at the phosphorous atom of PEP that results in P—O bond cleavage by the action of enzymes such as pyruvate kinase (25), PEP carboxylase (34), and PEP carboxykinase (8).In classical studies with Escherichia coli, DAHP synthase (44, 45) and KDOP synthase (41) are specific for E4P and A5P, respectively. In contrast, we found that the KDOP synthase of Neisseria gonorrhoeae possessed the ability to utilize E4P in place of A5P. We addressed the question of whether KDOP synthase of N. gonorrhoeae in the presence of E4P and PEP was able to form DAHP, in which case it would also have the potential to function as a DAHP synthase. The time-dependent cleavage of the product was investigated by the periodate-oxidation-thiobarbituric acid (TBA) assay, and these results allow some speculation on the stereospecific course of the reaction in comparison with the reaction of DAHP synthase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号