首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutational Biosynthesis of Novel Rapamycins by a Strain of Streptomyces hygroscopicus NRRL 5491 Disrupted in rapL,Encoding a Putative Lysine Cyclodeaminase
Authors:Lake Ee Khaw  Günter A B?hm  Su Metcalfe  James Staunton  Peter F Leadlay
Institution:Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA,1. Cambridge Centre for Molecular Recognition and University Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW,2. and University of Cambridge Clinical School, Department of Surgery, Addenbrooke’s Hospital, Cambridge CB2 2QQ,3. United Kingdom
Abstract:The gene rapL lies within the region of the Streptomyces hygroscopicus chromosome which contains the biosynthetic gene cluster for the immunosuppressant rapamycin. Introduction of a frameshift mutation into rapL by ΦC31 phage-mediated gene replacement gave rise to a mutant which did not produce significant amounts of rapamycin. Growth of this rapL mutant on media containing added l-pipecolate restored wild-type levels of rapamycin production, consistent with a proposal that rapL encodes a specific l-lysine cyclodeaminase important for the production of the l-pipecolate precursor. In the presence of added proline derivatives, rapL mutants synthesized novel rapamycin analogs, indicating a relaxed substrate specificity for the enzyme catalyzing pipecolate incorporation into the macrocycle.Rapamycin is a 31-member macrocyclic polyketide produced by Streptomyces hygroscopicus NRRL 5491 which, like the structurally related compounds FK506 and immunomycin (Fig. (Fig.1),1), has potent immunosuppressive properties (24). Such compounds are potentially valuable in the treatment of autoimmune diseases and in preventing the rejection of transplanted tissues (16). The biosynthesis of rapamycin requires a modular polyketide synthase, which uses a shikimate-derived starter unit (11, 20) and which carries out a total of fourteen successive cycles of polyketide chain elongation that resemble the steps in fatty acid biosynthesis (2, 27). l-Pipecolic acid is then incorporated (21) into the chain, followed by closure of the macrocyclic ring, and both these steps are believed to be catalyzed by a pipecolate-incorporating enzyme (PIE) (18), the product of the rapP gene (8, 15). Further site-specific oxidations and O-methylation steps (15) are then required to produce rapamycin. Open in a separate windowFIG. 1Structures of rapamycin, FK506, and immunomycin.The origin of the pipecolic acid inserted into rapamycin has been previously established (21) to be free l-pipecolic acid derived from l-lysine (although the possible role of d-lysine as a precursor must also be borne in mind) (9). Previous work with other systems has suggested several alternative pathways for pipecolate formation from lysine (22), but the results of the incorporation of labelled lysine into the pipecolate moiety of immunomycin (Fig. (Fig.1)1) clearly indicate loss of the α-nitrogen atom (3). More recently, the sequencing of the rap gene cluster revealed the presence of the rapL gene (Fig. (Fig.2),2), whose deduced gene product bears striking sequence similarity to two isoenzymes of ornithine deaminase from Agrobacterium tumefaciens (25, 26). Ornithine deaminase catalyzes the deaminative cyclization of ornithine to proline, and we have proposed (15) that the rapL gene product catalyzes the analogous conversion of l-lysine to l-pipecolate (Fig. (Fig.3).3). Open in a separate windowFIG. 2A portion of the rapamycin biosynthetic gene cluster which contains ancillary (non-polyketide synthase) genes (15, 27). PKS, polyketide synthase.Open in a separate windowFIG. 3(A) The conversion of l-ornithine to l-proline by ornithine cyclodeaminase (17). (B) Proposed conversion of l-lysine to l-pipecolic acid by the rapL gene product.Here, we report the use of ΦC31 phage-mediated gene replacement (10) to introduce a frameshift mutation into rapL and the ability of the mutant to synthesize rapamycins in the absence or presence of added pipecolate or pipecolate analogs.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号