首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Roles of Low-Molecular-Weight Penicillin-Binding Proteins in Bacillus subtilis Spore Peptidoglycan Synthesis and Spore Properties
Authors:David L Popham  Meghan E Gilmore  Peter Setlow
Institution:Department of Biology, Virginia Tech, Blacksburg, Virginia 24061,1. and Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06030-33052.
Abstract:The peptidoglycan cortex of endospores of Bacillus species is required for maintenance of spore dehydration and dormancy, and the structure of the cortex may also allow it to function in attainment of spore core dehydration. A significant difference between spore and growing cell peptidoglycan structure is the low degree of peptide cross-linking in cortical peptidoglycan; regulation of the degree of this cross-linking is exerted by d,d-carboxypeptidases. We report here the construction of mutant B. subtilis strains lacking all combinations of two and three of the four apparent d,d-carboxypeptidases encoded within the genome and the analysis of spore phenotypic properties and peptidoglycan structure for these strains. The data indicate that while the dacA and dacC products have no significant role in spore peptidoglycan formation, the dacB and dacF products both function in regulating the degree of cross-linking of spore peptidoglycan. The spore peptidoglycan of a dacB dacF double mutant was very highly cross-linked, and this structural modification resulted in a failure to achieve normal spore core dehydration and a decrease in spore heat resistance. A model for the specific roles of DacB and DacF in spore peptidoglycan synthesis is proposed.Peptidoglycan (PG) is the structural element of the bacterial cell wall which determines cell shape and which resists the turgor pressure within the cell. The bacterial endospores produced by species of Bacillus, Clostridium, and several other bacterial genera are modified cells that are able to survive long periods and extreme conditions in a dormant, relatively dehydrated state. The PG wall within the endospore is required for maintenance of the dehydrated state (10, 11), which is the major determinant of spore heat resistance (2, 17, 22). Spore PG appears to be comprised of two distinct though contiguous layers. The thin inner layer, the germ cell wall, appears to have a structure similar to that of the vegetative wall and serves as the initial cell wall of the germinated spore (1, 20, 21, 31). The thicker outer layer, the spore cortex, has a modified structure which may determine its ability to carry out roles specific to the spore, and is rapidly degraded during spore germination (1, 20, 35, 37). The most dramatic of the cortex structural modifications results in partial cleavage or complete removal of ∼75% of the peptide side chains from the glycan strands. Loss of these peptides limits the cross-linking potential of the PG and results in the formation of only one peptide cross-link per 35 disaccharide units in the spore PG, compared to one peptide cross-link per 2.3 to 2.9 disaccharide units in the vegetative PG (1, 20, 36). This low degree of cross-linking has been predicted to give spore PG a flexibility that allows it to have a role in attainment of spore core dehydration (14, 34) in addition to its clear role in maintenance of dehydration. We are studying the structure and mechanism of synthesis of spore PG in an attempt to discern the roles of this structure and its individual components in determining spore properties.A family of proteins called the penicillin-binding proteins (PBPs) polymerizes PG on the external surface of the cell membrane (reviewed in reference 7). The high-molecular-weight (high-MW) members of this family (generally ≥60 kDa) carry the transglycosylase and transpeptidase activities involved in polymerization and cross-linking of the glycan strands. The low-MW PBPs have commonly been found to possess d,d-carboxypeptidase activity. This activity can remove the terminal d-alanine of the peptide side chains and thereby prevent the side chain from serving as a donor in the formation of a peptide cross-link. Analysis of the B. subtilis genome reveals six low-MW PBP-encoding genes: dacA (33), dacB (4), dacC (19), dacF (38), pbpE (23), and pbpX (accession no. Z99112). The four dac gene products exhibit very high sequence similarity to proven d,d-carboxypeptidases, and this activity has been demonstrated in vitro for the dacA and dacB products, PBP5 (12) and PBP5* (32), respectively. The sequences of the pbpE and pbpX products are more distantly related, and no activity has yet been established or ruled out for them.PBP5 is the major penicillin-binding and d,d-carboxypeptidase activity found in vegetative cells (12). Although dacA expression declines significantly during sporulation, a significant amount of PBP5 remains during the time of spore PG synthesis (29). A dacA-null mutation results in no obvious effects on vegetative growth, sporulation, spore characteristics, or spore germination (3, 33). However, loss of PBP5 does result in a reduction of cleavage of peptide side chains from the tetrapeptide to the tripeptide form in the spore PG (20). PBP5* is expressed only during sporulation and only in the mother cell compartment of the sporangium, under the control of the RNA polymerase ςE subunit (4, 5, 28, 29). A dacB-null mutation leading to loss of this d,d-carboxypeptidase results in a fourfold increase in the effective cross-linking of the spore PG (1, 20, 22). This structural change is accompanied by only slight decreases in spore core dehydration and heat resistance (3, 22). The suspected d,d-carboxypeptidase activities of the products of the dacC and dacF genes have not been demonstrated. The latter two genes are expressed only during the postexponential growth phase: dacC is expressed during early stationary phase under the control of ςH (19) and dacF is expressed only within the forespore under the control of ςF (27, 38). Null mutations effecting either gene result in no obvious phenotype and no change in spore PG structure (19, 38).The multiplicity of these proteins in sporulating cells and the lack of effect of loss of some of them suggested redundancy of function among these proteins, a situation observed previously with PBPs of a high-MW class (25, 30, 39). In order to examine this possibility we have constructed mutants lacking multiple low-MW PBPs and have examined their sporulation efficiency, spore PG structure, spore heat resistance and wet density, and spore germination and outgrowth. The present study demonstrates a role for the dacF gene product in synthesis of spore PG, and we also present a model for the roles of the dacB and dacF gene products in spore PG formation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号