首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of Two Genes from Streptomyces argillaceus Encoding Glycosyltransferases Involved in Transfer of a Disaccharide during Biosynthesis of the Antitumor Drug Mithramycin
Authors:Ernestina Fernndez  Ulrike Weißbach  Csar Snchez Reillo  Alfredo F Braa  Carmen Mndez  Jürgen Rohr  Jos A Salas
Institution:Departamento de Biología Funcional e Instituto Universitario de Biotecnologia de Asturias (I.U.B.A.-C.S.I.C.), Universidad de Oviedo, 33006 Oviedo, Spain1.; Institut für Organische Chemie der Universität Göttingen, D-37077 Göttingen, Germany2.; and Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425-23033.
Abstract:Mithramycin is an antitumor polyketide drug produced by Streptomyces argillaceus that contains two deoxysugar chains, a disaccharide consisting of two d-olivoses and a trisaccharide consisting of a d-olivose, a d-oliose, and a d-mycarose. From a cosmid clone (cosAR3) which confers resistance to mithramycin in streptomycetes, a 3-kb PstI-XhoI fragment was sequenced, and two divergent genes (mtmGI and mtmGII) were identified. Comparison of the deduced products of both genes with proteins in databases showed similarities with glycosyltransferases and glucuronosyltransferases from different sources, including several glycosyltransferases involved in sugar transfer during antibiotic biosynthesis. Both genes were independently inactivated by gene replacement, and the mutants generated (M3G1 and M3G2) did not produce mithramycin. High-performance liquid chromatography analysis of ethyl acetate extracts of culture supernatants of both mutants showed the presence of several peaks with the characteristic spectra of mithramycin biosynthetic intermediates. Four compounds were isolated from both mutants by preparative high-performance liquid chromatography, and their structures were elucidated by physicochemical methods. The structures of these compounds were identical in both mutants, and the compounds are suggested to be glycosylated intermediates of mithramycin biosynthesis with different numbers of sugar moieties attached to C-12a-O of a tetracyclic mithramycin precursor and to C-2-O of mithramycinone: three tetracyclic intermediates containing one sugar (premithramycin A1), two sugars (premithramycin A2), or three sugars (premithramycin A3) and one tricyclic intermediate containing a trisaccharide chain (premithramycin A4). It is proposed that the glycosyltransferases encoded by mtmGI and mtmGII are responsible for forming and transferring the disaccharide during mithramycin biosynthesis. From the structures of the new metabolites, a new biosynthetic sequence regarding late steps of mithramycin biosynthesis can be suggested, a sequence which includes glycosyl transfer steps prior to the final shaping of the aglycone moiety of mithramycin.

Many bioactive drugs contain sugars attached to their aglycones which are usually important or, in some cases, essential for bioactivity. Most of these sugars belong to the family of the 6-deoxyhexoses (6-DOH) (18, 20, 27) and are transferred to the different aglycones as late steps in biosynthesis. Genes involved in the biosynthesis of different 6-DOH have been reported elsewhere and participate in the biosynthesis of erythromycin (9, 12, 31, 38, 39), daunorubicin (13, 26, 36), mithramycin (22), granaticin (2), streptomycin (10, 28), and tylosin (14, 23). However, information about the glycosyltransferases (GTFs) responsible for the transfer of the sugars to the respective aglycones is quite scarce. So far, only two GTFs from antibiotic producers have been biochemically characterized in detail, and they are involved in macrolide inactivation: Mgt, from Streptomyces lividans, a nonmacrolide producer (7, 17); and OleD, from the oleandomycin producer Streptomyces antibioticus (15, 29), which inactivates oleandomycin by addition of glucose to the 2′-OH group of the desosamine attached to the macrolactone ring (40). In the last several years, a few genes have been proposed to encode GTFs involved in the transfer of sugars to various aglycones during biosynthesis: dnrS and dnrH, from Streptomyces peucetius, involved in daunorubicin (26) and baumycin (36) biosynthesis, respectively; gra-orf5, involved in granaticin biosynthesis (2); eryCIII and eryBV, involved in the transfer of desosamine and mycarose, respectively, in erythromycin biosynthesis (12, 32, 38); and tylM2, from Streptomyces fradiae, involved in sugar transfer during tylosin biosynthesis (14).Mithramycin (Fig. (Fig.1)1) is an aromatic polyketide which shows antibacterial activity against gram-positive bacteria and also antitumor activity (30, 37). Together with the chromomycins and the olivomycins, mithramycin constitutes the so-called aureolic acid group of antitumor drugs. The polyketide moiety of mithramycin is derived from the condensation of 10 acetate building blocks in a series of reactions catalyzed by a type II polyketide synthase (5, 21). The mithramycin aglycone is glycosylated at positions 6 and 2 with disaccharide (d-olivose- d-olivose) and trisaccharide (d-olivose-d-oliose-d-mycarose) moieties, respectively. All of these sugars belong to the 6-DOH family. In the mithramycin pathway, two genes (mtmD and mtmE) encoding two enzymes (glucose-1-phosphate:TTP thymidylyl transferase and dTDP-4,6-dehydratase, respectively) involved in the biosynthesis of the mithramycin 6-DOH have been cloned, and their participation in mithramycin biosynthesis has been demonstrated by insertional inactivation (22). Here we report the characterization of two Streptomyces argillaceus genes (mtmGI and mtmGII) that encode two putative GTFs responsible for the formation and transfer of the disaccharide chain. Inactivation of these genes by gene replacement showed identical accumulated compounds and allowed the isolation of four glycosylated compounds which are likely to be intermediates in mithramycin biosynthesis. Open in a separate windowFIG. 1Structures of mithramycin, premithramycinone, and the new premithramycins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号